Microhabitat drive microbial anabolism to promote carbon sequestration during composting
[Display omitted] •Microbial metabolism drives the transformation of organic matter in composting.•Microhabitat factors directly affect microbial metabolism.•Regulating composting parameters may realize carbon fixation with high efficiency.•Utilize functional materials could stabilize formed humus c...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2022-02, Vol.346, p.126577-126577, Article 126577 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•Microbial metabolism drives the transformation of organic matter in composting.•Microhabitat factors directly affect microbial metabolism.•Regulating composting parameters may realize carbon fixation with high efficiency.•Utilize functional materials could stabilize formed humus components.
Transforming organic waste into stable carbon by composting is an eco-friendly way. However, the complex environment, huge microbial community and complicated metabolic of composting have limited the directional transformation of organic carbon, which is also not conducive to the fixation of organic carbon. Therefore, this review is based on the formation of humus, a stable by-product of composting, to expound how to promote carbon fixation by increasing the yield of humus. Firstly, we have clarified the transformation regularity of organic matter during composting. Meanwhile, the microhabitat factors affecting microbial catabolism and anabolism were deeply analyzed, in order to provide a theoretical basis for the micro habitat regulation of directional transformation of organic matter during composting. Given that, a method to adjust the directional humification and stabilization of organic carbon has been proposed. Hoping the rapid reduction and efficient stabilization of organic waste can be realized according to this method. |
---|---|
ISSN: | 0960-8524 1873-2976 |
DOI: | 10.1016/j.biortech.2021.126577 |