High-Performance-Integrated Stretchable Supercapacitors Based on a Polyurethane Organo/Hydrogel Electrolyte
Stretchable supercapacitors (SSCs) are promising energy storage devices for emerging wearable electronics. However, the low-energy density and poor deformation performance are still a challenge. Herein, an amphiphilic polyurethane-based organo/hydrogel electrolyte (APUGE) with a H2O/AN-in-salt (H2O/...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-01, Vol.14 (1), p.622-632 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stretchable supercapacitors (SSCs) are promising energy storage devices for emerging wearable electronics. However, the low-energy density and poor deformation performance are still a challenge. Herein, an amphiphilic polyurethane-based organo/hydrogel electrolyte (APUGE) with a H2O/AN-in-salt (H2O/AN-NaClO4) is prepared for the first time. The as-prepared APUGE shows a wide voltage window (∼2.3 V), good adhesion, and excellent resilience. In addition, the intrinsically stretchable electrodes are prepared by coating the activated carbon slurry onto the PU/carbon black/MWCNT conductive elastic substrate. Based on the strong interface adhesion of the PU matrix, the as-assembled SSC delivers high-energy density (5.65 mW h cm–3 when the power density is 0.0256 W cm–3) and excellent deformation stability with 94.5% capacitance retention after 500 stretching cycles at 100% strain. This fully integrated construction concept is expected to be extended to multisystem stretchable metal ion batteries, stretchable lithium–sulfur batteries, and other stretchable energy storage devices. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c17186 |