RING E3 ubiquitin ligase TaSADR1 negatively regulates drought resistance in transgenic Arabidopsis

Drought stress is an important factor that affects crop yields and quality. E3 ubiquitin ligase has crucial roles in the responses to abiotic stresses. However, few studies have investigated the role of E3 ubiquitin ligase during drought stress in wheat. In this study, we cloned and identified the o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry 2022-01, Vol.170, p.255-265
Hauptverfasser: Sun, Huimin, Li, Jiatao, Li, Xu, Lv, Qian, Chen, Liuping, Wang, Bingxin, Li, Liqun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Drought stress is an important factor that affects crop yields and quality. E3 ubiquitin ligase has crucial roles in the responses to abiotic stresses. However, few studies have investigated the role of E3 ubiquitin ligase during drought stress in wheat. In this study, we cloned and identified the orthologous gene of Oryza sativa Salt-, ABA- and Drought-Induced RING Finger Protein 1 (OsSADR1) in wheat (Triticum aestivum L.) called TaSADR1. TaSADR1 encodes a protein containing 486 amino acids with a C3HC4 type RING finger conserved domain at the N-terminal. We confirmed that TaSADR1 has an E3 ubiquitin ligase activity and it is located in the nucleus. High expression of TaSADR1 was induced by treatment with PEG6000 and abscisic acid (ABA). TaSADR1-overexpressing transgenic Arabidopsis plants exhibited decreased drought tolerance. Under drought stress, compared with the wild-type (WT) lines, TaSADR1-overexpressing transgenic Arabidopsis lines had lower proline and chlorophyll contents, and antioxidant enzyme activities (superoxide dismutase, peroxidase, and catalase), whereas the water loss rate, malondialdehyde content, and relative electrolyte leakage were higher. In addition, the overexpressing transgenic Arabidopsis lines were more sensitive to mannitol and ABA treatment at seed germination and during seedling growth. The expression levels of genes related to stress were downregulated under drought conditions in the transgenic plants. Our results demonstrate that TaSADR1 may negatively regulate drought stress responses by regulating the expression of stress-related genes. •TaSADR1 in wheat identified as a C3HC4 type RING E3 ubiquitin ligase.•TaSADR1 possesses E3 ligase activity.•TaSADR1 has a negative role in drought resistance.
ISSN:0981-9428
1873-2690
DOI:10.1016/j.plaphy.2021.12.004