Effect of Highly Periodic Au Nanopatterns on Dendrite Suppression in Lithium Metal Batteries
Despite the extremely high energy density of the lithium metal, dendritic lithium growth caused by nonuniform lithium deposition can result in low Coulombic efficiency and safety hazards, thereby inhibiting its practical applications. Here, we report a new strategy for adopting a nanopatterned gold...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-12, Vol.13 (51), p.60978-60986 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite the extremely high energy density of the lithium metal, dendritic lithium growth caused by nonuniform lithium deposition can result in low Coulombic efficiency and safety hazards, thereby inhibiting its practical applications. Here, we report a new strategy for adopting a nanopatterned gold (Au) seed on a copper current collector for uniform lithium deposition. We find that Au nanopatterns enhance lithium metal battery performance, which is strongly affected by the feature dimensions of Au nanopatterns (diameter and height). Ex situ scanning electron microscopy images confirm that this can be attributed to the perfectly selective lithium nucleation and uniform growth resulting from the spatial confinement effect. The spatial arrangement of Au dot seeds homogenizes the Li+ flux and electric field, and the size-controlled Au seeds prevent both seed-/substrate-induced agglomeration and interseed-induced lithium growth, leading to uniform lithium deposition. This dendrite-free lithium deposition results in the improvement of electrochemical performance, and the system showed cyclic stability over 300 cycles at 0.5 mA cm–2 and 200 cycles at 1.0 mA cm–2 (1 mA h cm–2) and a high rate capability. This study provides in-depth insights into the more complicated and diverse seed geometry control of seed materials for the development of high-performance lithium metal batteries. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c15196 |