Effects of D-amino acids on sleep in Drosophila
Sleep and metabolism are closely related and nutritional elements such as sugars and amino acids are known to regulate sleep differently. Here we comprehensively investigated the effects of D-amino acids fed in the diet on the sleep of Drosophila melanogaster. Among 19 amino acids examined, both D-s...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2022-01, Vol.589, p.180-185 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sleep and metabolism are closely related and nutritional elements such as sugars and amino acids are known to regulate sleep differently. Here we comprehensively investigated the effects of D-amino acids fed in the diet on the sleep of Drosophila melanogaster. Among 19 amino acids examined, both D-serine (Ser) and D-glutamine (Gln) induced a significant increase in sleep amount and the effect of D-Ser was the largest at the same concentration of 1% of the food. The effects were proportional to its concentration and significant above 0.5% (about 50 mM). D-Ser is known to bind NR1 subunit of NMDA type glutamate receptor (NMDAR) and activate it. D-Ser did not increase the sleep of the NR1 hypomorphic mutant flies indicating its effects on sleep is mediated by NMDAR. In addition, hypomorphic mutants of D-amino acid oxidase (Daao1), which catabolizes D-amino acids and its disruption is known to increase D-Ser in the brain, showed increase in sleep. These results altogether suggested that D-Ser activated NMDAR in the brain thus increase sleep, and that D-Ser work physiologically to regulate sleep.
•D-Serine feeding increased sleep in a fruit fly, Drosophila melanogaster.•D-Serine was ineffective on sleep of NMDAR hypomorphic mutant fly.•D-amino acid oxidase hypomorphic mutant fly showed increase in sleep.•D-Serine may be involved physiological sleep regulation in Drosophila. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2021.11.107 |