Ru doping NiCoP hetero-nanowires with modulated electronic structure for efficient overall water splitting
[Display omitted] Herein, a novel Ru-doped bimetal phosphide (Ru-NiCoP) heterostructure electrocatalyst on Ni foam is successfully synthesized through a multi-step hydrothermal reaction, ion exchange, and phosphorization method for efficient overall water splitting in alkaline media. The doping of R...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2022-03, Vol.610, p.213-220 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Herein, a novel Ru-doped bimetal phosphide (Ru-NiCoP) heterostructure electrocatalyst on Ni foam is successfully synthesized through a multi-step hydrothermal reaction, ion exchange, and phosphorization method for efficient overall water splitting in alkaline media. The doping of Ru and P can effectively optimize the electronic structure and expose more active sites. The unique 3D interconnected nanowires not only ensures the uniform distribution of Ru coupled with NiCoP, but also endows the Ru-NiCoP/NF with the large ECSA, the fast electron transport and the favorable reaction kinetics attributes. Benefiting from the compositional and structural advantages, Ru-NiCoP/NF catalyst exhibits significantly enhancedcatalytic activities along with excellent stability, only needing 32.3 mV at 10 mA cm−2 for HER and 233.8 mV at 50 mA cm−2 for OER. In particular, when Ru-NiCoP/NF is employed as both cathode and anode electrodes,a small voltage of 1.50 V is required to reach 30 mA cm−2for overall water splittingwith an impressive stability. This study provides an alternative strategyon the design and development of high performance catalysts foroverall water splittingand other energy conversion fields. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2021.12.028 |