Probiotics in tilapia (Oreochromis niloticus) culture: Potential probiotic Lactococcus lactis culture conditions

Tilapia is one of the most extensively farmed fish on a global scale. Lately, many studies have been carried out to select and produce probiotics for cultured fish. Bacteria from the genera Bacillus, Lactiplantibacillus (synonym: Lactobacillus), and Lactococcus are the most widely studied with respe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bioscience and bioengineering 2022-03, Vol.133 (3), p.187-194
Hauptverfasser: Cano-Lozano, Juan Andrés, Villamil Diaz, Luisa Marcela, Melo Bolivar, Javier Fernando, Hume, Michael E., Ruiz Pardo, Ruth Yolanda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tilapia is one of the most extensively farmed fish on a global scale. Lately, many studies have been carried out to select and produce probiotics for cultured fish. Bacteria from the genera Bacillus, Lactiplantibacillus (synonym: Lactobacillus), and Lactococcus are the most widely studied with respect to their probiotic potential. Among these microorganisms, Lactococcus lactis has outstanding prospects as a probiotic because it is generally recognized as safe (GRAS) and has previously been shown to exert its probiotic potential in aquaculture through different mechanisms, such as competitively excluding pathogenic bacteria, increasing food nutritional value, and enhancing the host immune response against pathogenic microorganisms. However, it is not sufficient to simply select a microorganism with significant probiotic potential for commercial probiotic development. There are additional challenges related to strategies involving the mass production of bacterial cultures, including the selection of production variables that positively influence microorganism metabolism. Over the last ten years, L. lactis production in batch and fed-batch processes has been studied to evaluate the effects of culture temperature and pH on bacterial growth. However, to gain a deeper understanding of the production processes, the effect of hydrodynamic stress on cells in bioreactor production and its influence on the probiotic potential post-manufacturing also need to be determined. This review explores the trends in tilapia culture, the probiotic mechanisms employed by L. lactis in aquaculture, and the essential parameters for the optimal scale-up of this probiotic.
ISSN:1389-1723
1347-4421
DOI:10.1016/j.jbiosc.2021.11.004