Thermal treatments reduce rancidity and modulate structural and digestive properties of starch in pearl millet flour
Pearl millet is a nutrient dense and gluten free cereal, however it's flour remains underutilized due to the onset of rancidity during its storage. To the best of our knowledge, processing methods, which could significantly reduce the rancidity of the pearl millet flour during storage, are non-...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2022-01, Vol.195, p.207-216 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pearl millet is a nutrient dense and gluten free cereal, however it's flour remains underutilized due to the onset of rancidity during its storage. To the best of our knowledge, processing methods, which could significantly reduce the rancidity of the pearl millet flour during storage, are non-existent. In this study, pearl millet grains were subjected to a preliminary hydro-treatment (HT). Subsequently, the hydrated grain-wet flour have undergone individual and combined thermal treatments viz., hydrothermal (HTh) and thermal near infrared rays (thNIR). Effects of these thermal treatments on the biochemical process of hydrolytic and oxidative rancidity were analyzed in stored flour. A significant (p |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2021.12.011 |