Anorexia disrupts glutamate-glutamine homeostasis associated with astroglia in the prefrontal cortex of young female rats

Anorexia nervosa (AN) is an eating disorder characterized by self-starvation and excessive weight loss with a notorious prevalence in young women. The neurobiology of AN is unknown but murine models, like dehydration induced anorexia (DIA), reproduce weight loss and avoidance of food despite its ava...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavioural brain research 2022-02, Vol.420, p.113715-113715, Article 113715
Hauptverfasser: Reyes-Ortega, Pamela, Soria-Ortiz, María Berenice, Rodríguez, Verónica M., Vázquez-Martínez, Eva Olivia, Díaz-Muñoz, Mauricio, Reyes-Haro, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anorexia nervosa (AN) is an eating disorder characterized by self-starvation and excessive weight loss with a notorious prevalence in young women. The neurobiology of AN is unknown but murine models, like dehydration induced anorexia (DIA), reproduce weight loss and avoidance of food despite its availability. Astrocytes are known to provide homeostatic support to neurons, but it is little explored if anorexia affects this function. In this study, we tested if DIA disrupts glutamate-glutamine homeostasis associated with astrocytes in the prefrontal cortex (PFC) of young female rats. Our results showed that anorexia reduced the redox state, as well as endogenous glutamate and glutamine. These effects correlated with a reduced expression of the glutamate transporters (GLT-1 and GLAST) and glutamine synthetase, all of them are preferentially expressed by astrocytes. Accordingly, the expression of GFAP was reduced. Anorexia reduced the astrocyte density, promoted a de-ramified morphology, and augmented the de-ramified/ramified astrocyte ratio in the medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC), but not in the motor cortex (M2). The increase of a de-ramified phenotype correlated with increased expression of vimentin and nestin. Based on these results, we conclude that anorexia disrupts glutamate-glutamine homeostasis and the redox state associated with astrocyte dysfunction.
ISSN:0166-4328
1872-7549
DOI:10.1016/j.bbr.2021.113715