N=1 super topological recursion

We introduce the notion of N = 1 super loop equations and provide two equivalent ways of solving them. The first approach is a recursive formalism that can be thought of as a supersymmetric generalization of the Eynard–Orantin topological recursion, based on the geometry of a local super spectral cu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Letters in mathematical physics 2021, Vol.111 (6), p.144-144
Hauptverfasser: Bouchard, Vincent, Osuga, Kento
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the notion of N = 1 super loop equations and provide two equivalent ways of solving them. The first approach is a recursive formalism that can be thought of as a supersymmetric generalization of the Eynard–Orantin topological recursion, based on the geometry of a local super spectral curve. The second approach is based on the framework of super Airy structures. The resulting recursive formalism can be applied to compute correlation functions for a variety of examples related to 2d supergravity.
ISSN:0377-9017
1573-0530
DOI:10.1007/s11005-021-01479-x