N=1 super topological recursion
We introduce the notion of N = 1 super loop equations and provide two equivalent ways of solving them. The first approach is a recursive formalism that can be thought of as a supersymmetric generalization of the Eynard–Orantin topological recursion, based on the geometry of a local super spectral cu...
Gespeichert in:
Veröffentlicht in: | Letters in mathematical physics 2021, Vol.111 (6), p.144-144 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the notion of
N
=
1
super loop equations and provide two equivalent ways of solving them. The first approach is a recursive formalism that can be thought of as a supersymmetric generalization of the Eynard–Orantin topological recursion, based on the geometry of a local super spectral curve. The second approach is based on the framework of super Airy structures. The resulting recursive formalism can be applied to compute correlation functions for a variety of examples related to 2d supergravity. |
---|---|
ISSN: | 0377-9017 1573-0530 |
DOI: | 10.1007/s11005-021-01479-x |