Stable Isotope-Labeled Precursor Tracing Reveals that l‑Alanine is Converted to l‑Theanine via l‑Glutamate not Ethylamine in Tea Plants In Vivo

Tea plants (Camellia sinensis) specifically produce l-theanine, which contributes to tea function and taste. Ethylamine is a limiting factor differentiating l-theanine accumulation between tea and other plants. Ethylamine has long been assumed to be derived from l-alanine in tea. In this study, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2021-12, Vol.69 (50), p.15354-15361
Hauptverfasser: Fu, Xiumin, Liao, Yinyin, Cheng, Sihua, Deng, Rufang, Yang, Ziyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tea plants (Camellia sinensis) specifically produce l-theanine, which contributes to tea function and taste. Ethylamine is a limiting factor differentiating l-theanine accumulation between tea and other plants. Ethylamine has long been assumed to be derived from l-alanine in tea. In this study, the l-alanine content in tea root cells was mainly located in vacuoles and mitochondria using a nonaqueous fractionation technique, while alanine decarboxylase in tea (CsADC) was located in the cytoplasm. Although CsADC was able to catalyze l-alanine decarboxylation to produce ethylamine in vitro, it may not provide the same enzyme activity in tea plants. Stable isotope-labeled precursor tracing in tea plants discovered that l-alanine is not a direct precursor of ethylamine but a precursor of l-glutamate, which is involved in l-theanine biosynthesis in tea. Cortex with epidermis from root tissue was the main location of ethylamine. In summary, l-alanine is converted to l-theanine via l-glutamate not ethylamine in tea plants in vivo.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.1c06660