MICAL1 inhibits colorectal cancer cell migration and proliferation by regulating the EGR1/β-catenin signaling pathway

[Display omitted] MICAL1 has been reported to be involved in the malignant processes of several types of cancer cells, however, the roles of MICAL1 in colorectal cancer (CRC) have not been well-characterized. This study aims to investigate the cellular functions and molecular mechanisms of MICAL1 in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical pharmacology 2022-01, Vol.195, p.114870-114870, Article 114870
Hauptverfasser: Gu, Huanyu, Li, Yi, Cui, Xiuping, Cao, Huiru, Hou, Zhijuan, Ti, Yunhe, Liu, Dahua, Gao, Jing, Wang, Yu, Wen, Pushuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] MICAL1 has been reported to be involved in the malignant processes of several types of cancer cells, however, the roles of MICAL1 in colorectal cancer (CRC) have not been well-characterized. This study aims to investigate the cellular functions and molecular mechanisms of MICAL1 in CRC cells. Here, we found that both mRNA and protein levels of MICAL1 were down-regulated in colorectal cancer tissues compared with matched adjacent non-tumor tissues, and the expression level of MICAL1 was correlated with the metastatic status of colorectal cancer. Importantly, overexpression of MICAL1 significantly inhibited colorectal cancer cell migration and growth, and increased the level of E-cadherin and Occludin, and suppressed the expression level of Vimentin and N-cadherin; while silencing of MICAL1 promoted CRC cell migration and enhanced EMT. In addition, MICAL1 overexpression significantly inhibited the proliferation and growth of CRC in vitro and in vivo. Moreover, RNA sequencing and bioinformatics analysis identified that MICAL1 was closely correlated with “cell migration”, “cell cycle” and “β-catenin signaling” genesets. Mechanistically, overexpression of MICAL1 downregulated the mRNA level of EGR1 and β-catenin, decreased the protein level and nuclear translocation of β-catenin, and inhibited the transcriptions of β-catenin downstream targets, c-myc and cyclin D1. The ectopic expression of EGR1 or β-catenin can significantly block the MICAL1-mediated inhibitory effects. Collectively, MICAL1 is down-regulated in CRC, and plays an inhibitory role in the migration and growth of CRC cells by suppressing the ERG1/β-catenin signaling pathway.
ISSN:0006-2952
1873-2968
DOI:10.1016/j.bcp.2021.114870