Synthesis, modifications and applications of MILs Metal-organic frameworks for environmental remediation: The cutting-edge review

Ever-increasing anthropogenic activities are radically deteriorating the environment by causing severe pollution. Thus, curtailing the environmental pollution and promotion of sustainable development, are the hot issues confronted by scientists in this modern era. Metal-organic frameworks (MOFs) hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-03, Vol.810, p.152279-152279, Article 152279
Hauptverfasser: Khan, Sara, Guan, Qing, Liu, Qian, Qin, Zewan, Rasheed, Bilal, Liang, Xiaoxia, Yang, Xia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ever-increasing anthropogenic activities are radically deteriorating the environment by causing severe pollution. Thus, curtailing the environmental pollution and promotion of sustainable development, are the hot issues confronted by scientists in this modern era. Metal-organic frameworks (MOFs) have been highly recognized as emerging promising materials for environmental remediation due to their versatile structure and extraordinary properties. Among them, MILs (MIL = Matérial Institute of Lavoisier) are the series of MOFs mostly known for their incredible stability, unique tailorable pore structures, and astounding versatile environmental applications. Their exclusive physiochemical properties and multifunctionality make them proficient for a wide range of pollutants removal in the exposure of versatile harsh environments, compared to other MOFs. This piece of research summarizes the state-of-the-art of development of MILs on the broad spectrum, highlighting their specificities, such as synthesis techniques, modifications and applications for environmental remediation. However, MILs wonderful properties and extraordinary applications in multiple fields, their deployment on practical and commercial-scale pollutants remediation is hindered by insufficient scientific research on underlying mechanisms and relationships. Henceforth, this review not only signifies the emerging importance of MILs for environmental applications but also indicates the urgency to maximize the scientific research for exploitation of MOFs on a practical level and promotion of green technologies for environmental remediation. [Display omitted] •Multifunctionality and potential of MILs for environmental remediation are signified.•Advanced synthetic and modification techniques are critically summarized.•Photocatalytic and adsorptive mechanisms of pollutants removal are analyzed.•Future challenges to promote the practical deployment of MILs are also discussed.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.152279