Bi2O2CO3/red phosphorus S-scheme heterojunction for H2 evolution and Cr(VI) reduction
[Display omitted] Red phosphorus (RP) has a suitable energy band structure and excellent photocatalytic properties. However, there are some problems, such as low quantum efficiency and serious photogenerated electron-hole recombination. The S-scheme heterostructure shows great potential in facilitat...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2022-03, Vol.609, p.320-329 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Red phosphorus (RP) has a suitable energy band structure and excellent photocatalytic properties. However, there are some problems, such as low quantum efficiency and serious photogenerated electron-hole recombination. The S-scheme heterostructure shows great potential in facilitating the separation and transfer of photogenerated carriers and obtaining strong photo-redox ability. Herein, hydrothermally treated red phosphorus (HRP) was combined with Bi2O2CO3 to construct Bi2O2CO3/HRP S-scheme heterojunction composite. The Bi2O2CO3 content was optimized, and the 5 %Bi2O2CO3/HRP composite obtained at 5 %Bi2O2CO3 mass fraction exhibited the strongest photoreduction ability. The Cr(VI) photoreduction and photolytic hydrogen production rates were as high as 0.22 min−1 and 157.2 μmol •h−1, which were 7.3 and 3.0 times higher than those of HRP, respectively. The promoted photocatalytic activity could be attributed to the formation of S-scheme heterojunctions, which accelerated the separation and transfer of useful photogenerated electron-hole pairs, while enhancing the recombination of relatively useless photogenerated electron-hole pairs, thereby resulting in the highest photocurrent density (17.3 μA/cm2) of the 5 %Bi2O2CO3/HRP composite, which was 1.6 and 4.3 times higher than pure Bi2O2CO3 (10.5 μA/cm2) and pure HRP (4.0 μA/cm2), respectively. This work would provide an advanced approach to enhance the photocatalytic activity of RP. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2021.11.136 |