Evaluation of in vitro and in silico anti-inflammatory potential of some selected medicinal plants of Bangladesh against cyclooxygenase-II enzyme

Medicinal plants are sources of chemical treasures that can be used in treatment of different diseases, including inflammatory disorders. Traditionally, Heritiera littoralis, Ceriops decandra, Ligustrum sinense, and Polyscias scutellaria are used to treat pain, hepatitis, breast inflammation. The pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ethnopharmacology 2022-03, Vol.285, p.114900-114900, Article 114900
Hauptverfasser: Islam, Md Aminul, Zilani, Md Nazmul Hasan, Biswas, Partha, Khan, Dhrubo Ahmed, Rahman, Md Hasanur, Nahid, Ruqayyah, Nahar, Nazmun, Samad, Abdus, Ahammad, Foysal, Hasan, Md Nazmul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Medicinal plants are sources of chemical treasures that can be used in treatment of different diseases, including inflammatory disorders. Traditionally, Heritiera littoralis, Ceriops decandra, Ligustrum sinense, and Polyscias scutellaria are used to treat pain, hepatitis, breast inflammation. The present research was designed to explore phytochemicals from the ethanol extracts of H. littoralis, C. decandra, L. sinense, and P. scutellaria to discern the possible pharmacophore (s) in the treatment of inflammatory disorders. The chemical compounds of experimental plants were identified through GC-MS analysis. Furthermore, in-vitro anti-inflammatory activity was assessed in human erythrocytes and an in-silico study was appraised against COX-2. The experimental extracts totally revealed 77 compounds in GC-MS analysis and all the extracts showed anti-inflammatory activity in in-vitro assays. The most favorable phytochemicals as anti-inflammatory agents were selected via ADMET profiling and molecular docking with specific protein of the COX-2 enzyme. Molecular dynamics simulation (MDS) confirmed the stability of the selected natural compound at the binding site of the protein. Three phytochemicals exhibited the better competitive result than the conventional anti-inflammatory drug naproxen in molecular docking and MDS studies. Both experimental and computational studies have scientifically revealed the folklore uses of the experimental medicinal plants in inflammatory disorders. Overall, N-(2-hydroxycyclohexyl)-4-methylbenzenesulfonamide (PubChem CID: 575170); Benzeneethanamine, 2-fluoro-. beta., 3, 4-trihydroxy-N-isopropyl (PubChem CID: 547892); and 3,5-di-tert-butylphenol (PubChem CID: 70825) could be the potential leads for COX-2 inhibitor for further evaluation of drug-likeliness. [Display omitted] •Identification of bioactive compounds through GC-MS.•In vitro anti-inflammatory activity in human erythrocytes.•Molecular docking study of identified compounds against COX-2.•Molecular dynamic simulation study of selected compounds.
ISSN:0378-8741
1872-7573
DOI:10.1016/j.jep.2021.114900