Fly ash and H2O2 assisted hydrothermal carbonization for improving the nitrogen and sulfur removal from sewage sludge

In this study, fly ash and hydrogen peroxide (H2O2) assisted hydrothermal carbonization (HTC) was used to improve the removal efficiency of nitrogen (N) and sulfur (S) from sewage sludge (SS). The removal rate and distribution of N and S in hydrochar were evaluated, and properties of the aqueous pha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2022-03, Vol.290, p.133209-133209, Article 133209
Hauptverfasser: Wang, Xiaobo, Shen, Yu, Liu, Xuecheng, Ma, Tengfei, Wu, Jin, Qi, Gaoxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, fly ash and hydrogen peroxide (H2O2) assisted hydrothermal carbonization (HTC) was used to improve the removal efficiency of nitrogen (N) and sulfur (S) from sewage sludge (SS). The removal rate and distribution of N and S in hydrochar were evaluated, and properties of the aqueous phase were analyzed to illustrate the N and S transformation mechanism during fly ash and H2O2 assisted HTC treatment of SS. The results suggested that during HTC process assisted by fly ash (10% of raw SS), dehydration, decarboxylation and hydrolysis of SS were strengthened due to the catalysis effect. The N and S removal were promoted marginally. For hydrochar achieved from HTC process with H2O2 addition, the N and S removal were improved slightly due to the biopolymer oxidization by ‧OH released from H2O2 decomposition. While for HTC treatment with fly ash and H2O2 supplementation, a positive synergistic effect on N and S removal was observed. The N and S removal obtained from fly ash (10% of raw SS) and H2O2 (48 g/L) assisted HTC increased to 81.71% and 62.83%, respectively, from those of 69.53% and 49.92% in control group. N and S removal mechanism analysis suggested that hydroxyl radicals (‧OH) produced by H2O2 decomposition will destroy SS structure, and the biopolymers such as polysaccharides and proteins will be decomposed to release N and S into the liquid residue. In addition, the fly ash acts as the catalyst will decrease the energy need for denification and desulfartion. Consequently, N and S removal efficiency was enhanced by fly ash and H2O2 assisted HTC treatment. [Display omitted] •Fly ash and H2O2 assisted HTC was used to remove N/S from sewage sludge.•C, N and S yield and distribution in hydrochar was investigated.•N and S removal increased by 36.02% and 25.40% by fly ash and H2O2 assisted HTC.•Fly ash and H2O2 assisted HTC facilitated N/S removal from sewage sludge.•Catalysis and oxidization effect contributed to the low N/S contents in hydrochar.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2021.133209