Temperature-Selective Self-Assembled Superlattices of Gold Nanoparticles Driven by Block Copolymer Template Guidance

Self-assembly of nanoparticles (NPs) into highly ordered structure can enhance their electronic and optical properties that provide great potential applications such as nanoelectronics and nanophotonics. However, the self-assembly of NPs upon external stimuli was still mainly continuous and irrevers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2021-12, Vol.12 (49), p.11960-11967
Hauptverfasser: Yoon, Young-Jin, Kang, Shin-Hyun, Kim, Tae-Hwan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Self-assembly of nanoparticles (NPs) into highly ordered structure can enhance their electronic and optical properties that provide great potential applications such as nanoelectronics and nanophotonics. However, the self-assembly of NPs upon external stimuli was still mainly continuous and irreversible, making various potential applications of NPs difficult. Herein, the self-assembled superlattices of gold nanoparticles (AuNPs) with a temperature-selective response had been investigated by using the amphiphilic block copolymer as a template. The AuNPs in the block copolymer template, which has the closed looplike phase behavior upon heating, self-assembled into the highly ordered body centered cubic (BCC) or face centered cubic (FCC) structures at a specific temperature region that means a temperature-selective responsiveness. The formation of highly ordered self-assembled superlattices (BCC or FCC symmetries) of AuNPs with the closed looplike phase behavior was controlled by the additive and temperature. This study is the first demonstration for temperature-selective response of the cooperative self-assembly of AuNPs in the block copolymer template.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.1c03268