Wavelet-Galerkin Discretization of Hyperbolic Equations
The relative merits of the wavelet-Galerkin solution of hyperbolic partial differential equations, typical of geophysical problems, are quantitatively and qualitatively compared to traditional finite difference and Fourier-pseudo-spectral methods. The wavelet-Galerkin solution presented here is foun...
Gespeichert in:
Veröffentlicht in: | Journal of Computational Physics 1995-11, Vol.122 (1), p.118-128 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The relative merits of the wavelet-Galerkin solution of hyperbolic partial differential equations, typical of geophysical problems, are quantitatively and qualitatively compared to traditional finite difference and Fourier-pseudo-spectral methods. The wavelet-Galerkin solution presented here is found to be a viable alternative to the two conventional techniques. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1006/jcph.1995.1201 |