Efficient peroxymonosulfate (PMS) activation by visible-light-driven formation of polymorphic amorphous manganese oxides
Heterogeneous sulfate radical-based advanced oxidation processes (SR-AOPs) have been widely reported over the last decade as a promising technology for pollutant removal from wastewater. In this study, a novel peroxymonosulfate (PMS) activator was obtained by visible-light-driven Mn(II) oxidation in...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2022-04, Vol.427, p.127938-127938, Article 127938 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heterogeneous sulfate radical-based advanced oxidation processes (SR-AOPs) have been widely reported over the last decade as a promising technology for pollutant removal from wastewater. In this study, a novel peroxymonosulfate (PMS) activator was obtained by visible-light-driven Mn(II) oxidation in the presence of nitrate. The photochemically synthesized manganese oxides (PC-MnOx) were polymorphic amorphous nanoparticles and nanorods, with an average oxidation state of approximately 3.0. It possesses effective PMS activation capacity and can remove 20 mg L−1 acid organic II (AO7) within 30 min. The AO7 removal performance of PC-MnOx was slightly decreased in natural waterbodies and in the presence of CO32-, while it showed an anti-interference capacity for Cl-, NO3- and humic acid. Chemical quenching, reactive oxygen species (ROS) trapping, X-ray photoelectric spectroscopy (XPS), in-situ Raman spectroscopy, and electrochemical experiments supported a nonradical mechanism, i.e., electron transfer from AO7 to the metastable PC-MnOx-PMS complex, which was responsible for AO7 oxidation. The PC-MnOx-PMS system also showed substrate preferences based on their redox potentials. Moreover, PC-MnOx could activate periodate (PI) but not peroxydisulfate (PDS) or H2O2. Overall, this study provides a new catalyst for PMS activation through a mild and green synthesis approach.
[Display omitted]
•Amorphous MnOx was obtained through visible-light-driven Mn(II) oxidation.•Amorphous MnOx-PMS can remove pollutants in a wide pH range.•Surface Mn(III)-PMS complex is essential for PMS activation.•Electron-transfer was regarded as the dominated pathway for AO7 degradation. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2021.127938 |