Degradation activity of fungal communities on avocado peel (Persea americana Mill.) in a solid-state process: mycobiota successions and trophic guild shifts
To explore the capability of soil mycobiota to degrade avocado peel waste and identify relevant successions and trophic guild shifts, fungal communities from three environments with different land uses were evaluated in a solid-state process. Soil samples used as inoculum were collected from a prist...
Gespeichert in:
Veröffentlicht in: | Archives of microbiology 2022-01, Vol.204 (1), p.2-2, Article 2 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To explore the capability of soil mycobiota to degrade avocado peel waste and identify relevant successions and trophic guild shifts, fungal communities from three environments with different land uses were evaluated in a solid-state process. Soil samples used as inoculum were collected from a pristine mature tropical forest, a traditionally managed Mayan land, and an intensively managed monospecific avocado plantation. Soil-substrate mixes were evaluated for 52 weeks to evaluate organic matter decay and the carbon-to-nitrogen ratio. Amplicon-based high-throughput sequencing from internally transcribed spacer (ITS) analysis revealed significant differences in fungal communities widely dominated by
Fusarium
sp. and
Clonostachys
sp.; however, less represented taxa showed relevant shifts concomitantly with organic matter content drops. Trophic guild assignment revealed different behaviors in fungal communities between treatments over the 52 weeks, suggesting distinct preconditioning of fungal communities in these environments. Overall, the results lead to the identification of promising degradation moments and inoculum sources for further consortia enrichment or bioprospecting efforts. |
---|---|
ISSN: | 0302-8933 1432-072X |
DOI: | 10.1007/s00203-021-02600-3 |