Mitochondria metabolomics reveals a role of β-nicotinamide mononucleotide metabolism in mitochondrial DNA replication

Abstract Mitochondrial DNA (mtDNA) replication is tightly regulated and necessary for cellular homeostasis; however, its relationship with mitochondrial metabolism remains unclear. Advances in metabolomics integrated with the rapid isolation of mitochondria will allow for remarkable progress in anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biochemistry (Tokyo) 2022-03, Vol.171 (3), p.325-338
Hauptverfasser: Nomiyama, Tomoko, Setoyama, Daiki, Yasukawa, Takehiro, Kang, Dongchon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Mitochondrial DNA (mtDNA) replication is tightly regulated and necessary for cellular homeostasis; however, its relationship with mitochondrial metabolism remains unclear. Advances in metabolomics integrated with the rapid isolation of mitochondria will allow for remarkable progress in analyzing mitochondrial metabolism. Here, we propose a novel methodology for mitochondria-targeted metabolomics, which employs a quick isolation procedure using a hemolytic toxin from Streptococcus pyogenes streptolysin O (SLO). SLO isolation of mitochondria from cultured HEK293 cells is time- and labor-saving for simultaneous multi-sample processing and has been applied to various other cell lines in this study. Furthermore, our method can detect the time-dependent reduction in mitochondrial ATP in response to a glycolytic inhibitor 2-deoxyglucose, indicating the suitability to prepare metabolite analysis–competent mitochondria. Using this methodology, we searched for specific mitochondrial metabolites associated with mtDNA replication activation, and nucleotides and NAD+ were identified to be prominently altered. Most notably, treatment of β-nicotinamide mononucleotide (β-NMN), a precursor of NAD+, to HEK293 cells activated and improved the rate of mtDNA replication by increasing nucleotides in mitochondria and decreasing their degradation products: nucleosides. Our results suggest that β-NMN metabolism plays a role in supporting mtDNA replication by maintaining the nucleotide pool balance in the mitochondria. Graphical Abstract Graphical Abstract
ISSN:0021-924X
1756-2651
DOI:10.1093/jb/mvab136