Understanding How Coacervates Drive Reversible Small Molecule Reactions to Promote Molecular Complexity

Liquid–liquid phase-separated coacervate droplets give rise to membraneless compartments that play an important role in the spatial organization and reactivity in cells. Due to their molecularly crowded nature and ability to sequester biomolecules, coacervate droplets create distinct environments fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2021-12, Vol.37 (49), p.14323-14335
Hauptverfasser: Jacobs, Michael I, Jira, Edward R, Schroeder, Charles M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Liquid–liquid phase-separated coacervate droplets give rise to membraneless compartments that play an important role in the spatial organization and reactivity in cells. Due to their molecularly crowded nature and ability to sequester biomolecules, coacervate droplets create distinct environments for enzymatic reaction kinetics and reaction mechanisms that markedly differ from bulk solution. In this work, we use a combination of experiments and quantitative modeling to understand how coacervate droplets promote reversible small molecule reaction chemistry. In particular, we study a model condensation reaction generating an unstable fluorescent imine in polyacrylic acid–polyethylene glycol coacervate droplets over a range of conditions. At equilibrium, the concentration of the imine product in coacervate droplets is approximately 140-fold larger than that in bulk solution, which arises due to preferential partitioning of reactants and products into coacervate droplets and a reaction equilibrium constant that is roughly threefold larger in coacervate droplets than in solution. A reaction–diffusion model is developed to quantitatively describe how competing reaction and partitioning equilibria govern the spatial distribution of the imine product inside coacervate droplets. Overall, our results show that compartmentalization stabilizes kinetically labile reaction products, which enables larger reactant concentrations in coacervate droplets compared to bulk solution. Broadly, these results provide an improved understanding of how biomolecular condensates promote multistep reaction pathways involving unstable reaction intermediates and suggest how coacervates provide a potential abiotic mechanism to promote molecular complexity.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.1c02231