Smart drug delivery of p-Coumaric acid loaded aptamer conjugated starch nanoparticles for effective triple-negative breast cancer therapy

The nano-drug delivery system utilizing the ligand functionalized nanoparticles have a tremendous application in cancer therapeutics. The present study was aimed to fabricate the p-Coumaric acid-loaded aptamer (ligand) conjugated starch nanoparticles (Apt-p-CA-AStNPs) for effective treatment of trip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2022-01, Vol.195, p.22-29
Hauptverfasser: Mariadoss, Arokia Vijaya Anand, Saravanakumar, Kandasamy, Sathiyaseelan, Anbazhagan, Karthikkumar, Venkatachalam, Wang, Myeong-Hyeon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nano-drug delivery system utilizing the ligand functionalized nanoparticles have a tremendous application in cancer therapeutics. The present study was aimed to fabricate the p-Coumaric acid-loaded aptamer (ligand) conjugated starch nanoparticles (Apt-p-CA-AStNPs) for effective treatment of triple-negative breast cancer (MDA-MB-231). The FT-IR spectrum showed the presence of functional groups associated with para-Coumaric acid (p-CA) and amino starch (AS) in p-CA-AStNPs. Further, the conjugation of aptamer in p-CA-AStNPs was confirmed by agarose gel electrophoresis. Transmission electron microscopic analysis revealed that the synthesized Apt-p-CA-AStNPs were less agglomerated. The zeta size analyzer displayed the average particle size of 218.97 ± 3.07 nm with ȥ-potential −29.2 ± 1.35 mV, and PDI 0.299 ± 0.05 for Apt-p-CA-AStNPs. The drug encapsulation and loading efficiencies were 80.30 ± 0.53% and 10.35 ± 0.85% respectively for Apt-p-CA-AStNPs. Apt-p-CA-AStNPs showed a rapid and bursting release in the initial five hours of the experiment in pH 5.4. A significant change was found in their cytotoxic efficacy between the samples: p-CA, p-CA-AStNPs, and Apt-p-CA-AStNPs. Among the tested samples, Apt-p-CA-AStNPs caused higher cytotoxicity in MDA-MB-231 cells through ROS regulation, nuclear damage, mitochondrial membrane potential, and apoptosis-related protein expressions. Overall, these results proved that Apt-p-CA-AStNPs were efficiently inhibited the MDA-MB-231 cells by regulating apoptosis. •p-Coumaric acid-loaded aptamer conjugated starch nanoparticles were fabricated.•The nano-drug delivery system of Apt-pCA-AStNPs was characterized.•Apt-pCA-AStNPs showed higher toxicity in MDA-MB-231cells by targeting the nucleolin.•nDD of Apt-pCA-AStNPs triggered the cell death in MDA-MB-231 by regulation of apoptosis.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2021.11.170