Development and reliability of a new system for bedside evaluation of non-volitional knee extension force

•NMES therapy counteracts skeletal muscles’ disuse effects in clinical settings.•The NMES-dynamometer system allows for knee extensors evaluation/stimulation.•The system is reliable if used by different raters or same rater on different days.•The system is clinically safe to mechanically load knee e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical engineering & physics 2021-12, Vol.98, p.28-35
Hauptverfasser: Vaz, Marco Aurélio, Fröhlich, Matias, Júnior, Danton Pereira da Silva, Schildt, Alessandro, Thomé, Paulo Ricardo Oppermann, Muller, André Frotta, Tondin, Bruno Rodriguez, Sbruzzi, Graciele, Maffiuletti, Nicola Angelo, Sanches, Paulo Roberto Stefani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•NMES therapy counteracts skeletal muscles’ disuse effects in clinical settings.•The NMES-dynamometer system allows for knee extensors evaluation/stimulation.•The system is reliable if used by different raters or same rater on different days.•The system is clinically safe to mechanically load knee extensor muscles.•The system may reduce muscle atrophy that occurs during bed-rest conditions. Neuromuscular electrical stimulation (NMES) is a widely-used technique for diagnostic and therapeutic purposes. Here we developed and tested the reliability of a new NMES-dynamometer system for bedside evaluation of knee extensor muscle function. Thirty-two healthy participants (16 men, 16 women; 27±5 years) completed two testing sessions, 7 days apart. On day 1, a single experienced rater, who repeated the evaluation on day 2 with two other raters, completed a standardized testing procedure. Participants were placed supine, with knees flexed and legs connected to the dynamometer. Maximal voluntary knee extensor isometric force (MVF) and supramaximal twitch force (TwF) were obtained. High intra-rater intraclass correlation coefficients were observed for both MVF (0.91) and TwF (0.94). MVF and TwF standard error of measurements (8.2%, 5.9%) and minimal detectable changes (16%, 11.6%) were low compared to mean values. High intraclass correlation coefficients were also observed for inter-rater comparisons of MVF (0.89) and TwF (0.86). Standard errors of measurements (MVF: 8.7%, TwF: 5.5%) and minimal detectable changes (MVF: 17.2%, TwF: 10.8%) were similar to intra-rater comparisons. The good reliability of the novel NMES-dynamometer system suggests it as an appropriate tool for the bedside evaluation of knee extensor muscle function.
ISSN:1350-4533
1873-4030
DOI:10.1016/j.medengphy.2021.10.007