Fate of polycyclic aromatic compounds from diluted bitumen spilled into freshwater limnocorrals
Diluted bitumens (dilbits) are produced by mixing highly viscous bitumen with lighter petroleum products to facilitate transport. The unique physical and chemical properties of dilbit may affect the environmental fate and effects of dilbit-derived chemical compounds when spilled. To further explore...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2022-05, Vol.819, p.151993-151993, Article 151993 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diluted bitumens (dilbits) are produced by mixing highly viscous bitumen with lighter petroleum products to facilitate transport. The unique physical and chemical properties of dilbit may affect the environmental fate and effects of dilbit-derived chemical compounds when spilled. To further explore this, we monitored experimental spills of Cold Lake Winter Blend (CLWB) dilbit for 70 days in limnocorrals installed in a freshwater boreal lake. A regression design with 2 controls and 7 treatments was used to assess the fate and behaviour of polycyclic aromatic compounds (PACs) as they partitioned from the dilbit into the air, water column and sediments. Treatments ranged from 1.5 to 180 L of CLWB, resulting in oil:water ratios ranging between 1:71000 to 1:500 (v:v). We began to detect elevated concentrations of PACs as early as 6 h post-addition in the air, 12 h post-addition in the water column, and 15–28 d post-addition in the sediments. By the end of the experiment, concentrations of PACs had largely declined in the water column but remained elevated in the sediments. Our results demonstrate that under conditions typical of temperate boreal lakes, only a small proportion of PACs from dilbit enters the aquatic system, but even so, may produce concentrations of ecotoxicological concern, especially in the sediments, which is the ultimate sink for dilbit-derived PACs.
[Display omitted]
•Naphthalenes were the most prominent PAC groups in the water and air.•Phenanthrenes were the most prominent PAC group in the sediments.•PAC concentrations were correlated with dilbit spill size in the water column.•Dilbit sinking resulted in sediment PAC concentrations that exceeded thresholds for toxicity. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2021.151993 |