Enhanced degradation of phenolic compounds in coal gasification wastewater by an iron‑carbon micro-electric field coupled with anaerobic co-digestion

Coal gasification wastewater contains many refractory and toxic pollutants, especially high concentrations of total phenols, which are difficult to degrade by microorganisms. The aim of our study is to explore the anaerobically enhanced degradation of coal gasification wastewater by an iron‑carbon m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-05, Vol.819, p.151991-151991, Article 151991
Hauptverfasser: Li, Yajie, Wang, Mengyan, Qian, Jingli, Hong, Yaoliang, Huang, Tianyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coal gasification wastewater contains many refractory and toxic pollutants, especially high concentrations of total phenols, which are difficult to degrade by microorganisms. The aim of our study is to explore the anaerobically enhanced degradation of coal gasification wastewater by an iron‑carbon micro-electric field coupled with anaerobic co-digestion. The optimal ratio of activated carbon to iron and the optimal dosage of co-substrate (glucose = 1500 mg/L) were investigated by batch tests. In the long-term operation of the iron‑carbon reactor, 1500 mg/L glucose was added into the influent, and carbon and iron in a ratio of 2:1 were added to the anaerobic sludge. The average effluent COD and total phenols concentrations were kept at approximately 455 and 56.3 mg/L, respectively, and removal rates of both reached 90% after treatment with the iron‑carbon micro-electric field coupled with anaerobic co-digestion in the iron‑carbon reactor. Moreover, compared with the control reactor, the methane production from the iron‑carbon reactor increased to 200 mL/day, with an increase in the methane production rate by 90%. Microbial community analysis indicated that hydrogenotrophic methanogens were enriched, and syntrophic metabolism via interspecies hydrogen transfer was enhanced. Direct interspecies electron transfer might occur between the potential electroactive bacteria Clostridium, Bacteroidetes, and Anaerolinea and the methanogens Methanosaeta, Methanobacterialies, and Methanobacterium for syntrophic metabolism through the iron‑carbon process coupled with anaerobic co-digestion. [Display omitted] •Anaerobic enhanced degradation of CGW by iron-carbon coupled with co-digestion investigated.•Dosage of co-substrate in influent and the optimum ratio of C/Fe were obtained.•Removal of COD and total phenols reached 90% and methane production rose to 200 mL/day.•Species diversity can be enhanced by iron-carbon coupled with co-digestion.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.151991