Evaluating the role of nitric oxide in myogenesis in vitro

Skeletal muscle injury activates satellite cells to proliferate as myoblasts and migrate, differentiate and fuse with existing fibres at the site of injury. Nitric oxide (NO), a free radical produced by NO synthase, is elevated and supports healing after in vivo injury. NOS-independent elevation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimie 2022-05, Vol.196, p.216-224
Hauptverfasser: Sibisi, N.C., Snyman, C., Myburgh, K.H., Niesler, C.U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Skeletal muscle injury activates satellite cells to proliferate as myoblasts and migrate, differentiate and fuse with existing fibres at the site of injury. Nitric oxide (NO), a free radical produced by NO synthase, is elevated and supports healing after in vivo injury. NOS-independent elevation of NO levels in vitro is possible via donors such as molsidomine (SIN-1). We hypothesized that alterations in NO levels may directly influence myogenic processes critical for skeletal muscle wound healing. This study aimed to clarify the role of NO in myoblast proliferation, migration and differentiation. Baseline NO levels were established in vitro, whereafter NO levels were manipulated during myogenesis using l-NAME (NOS inhibitor) or SIN-1. Baseline NO levels generated by myoblasts in proliferation media did not change 1 h after stimulation. Addition of a pro-proliferative dose of HGF slightly elevated NO levels 1 h post-stimulation, whereas cell numbers assessed 24 h later increased significantly; l-NAME reduced the HGF-driven increase in NO and proliferation, reducing wound closure over 16 h. In differentiation media, NO levels increased significantly within 24 h, returning to baseline over several days. Regular addition of l-NAME to differentiating cells significantly reduced NO levels and fusion. SIN-1 increased NO levels in a dose-dependent manner, reaching maximal levels 16 h post-treatment. SIN-1, added at 0, 2 and 4 days, significantly increased myofiber area (26 ± 1.8% vs 18.6 ± 3.4% in control at 5 day, p 
ISSN:0300-9084
1638-6183
DOI:10.1016/j.biochi.2021.11.006