Developing the Total Health Profile, a Generalizable Unified Set of Multimorbidity Risk Scores Derived From Machine Learning for Broad Patient Populations: Retrospective Cohort Study

Background: Multimorbidity clinical risk scores allow clinicians to quickly assess their patients' health for decision making, often for recommendation to care management programs. However, these scores are limited by several issues: existing multimorbidity scores (1) are generally limited to o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical Internet research 2021-11, Vol.23 (11), p.e32900-e32900, Article 32900
Hauptverfasser: Mahajan, Abhishaike, Deonarine, Andrew, Bernal, Axel, Lyons, Genevieve, Norgeot, Beau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Multimorbidity clinical risk scores allow clinicians to quickly assess their patients' health for decision making, often for recommendation to care management programs. However, these scores are limited by several issues: existing multimorbidity scores (1) are generally limited to one data group (eg, diagnoses, labs) and may be missing vital information, (2) are usually limited to specific demographic groups (eg, age), and (3) do not formally provide any granularity in the form of more nuanced multimorbidity risk scores to direct clinician attention. Objective: Using diagnosis, lab, prescription, procedure, and demographic data from electronic health records (EHRs), we developed a physiologically diverse and generalizable set of multimorbidity risk scores. Methods: Using EHR data from a nationwide cohort of patients, we developed the total health profile, a set of six integrated risk scores reflecting five distinct organ systems and overall health. We selected the occurrence of an inpatient hospital visitation over a 2-year follow-up window, attributable to specific organ systems, as our risk endpoint. Using a physician-curated set of features, we trained six machine learning models on 794,294 patients to predict the calibrated probability of the aforementioned endpoint, producing risk scores for heart, lung, neuro, kidney, and digestive functions and a sixth score for combined risk. We evaluated the scores using a held-out test cohort of 198,574 patients. Results: Study patients closely matched national census averages, with a median age of 41 years, a median income of $66,829, and racial averages by zip code of 73.8% White, 5.9% Asian, and 11.9% African American. All models were well calibrated and demonstrated strong performance with areas under the receiver operating curve (AUROCs) of 0.83 for the total health score (THS), 0.89 for heart, 0.86 for lung, 0.84 for neuro, 0.90 for kidney, and 0.83 for digestive functions. There was consistent performance of this scoring system across sexes, diverse patient ages, and zip code income levels. Each model learned to generate predictions by focusing on appropriate clinically relevant patient features, such as heart-related hospitalizations and chronic hypertension diagnosis for the heart model. The THS outperformed the other commonly used multimorbidity scoring systems, specifically the Charlson Comorbidity Index (CCI) and the Elixhauser Comorbidity Index (ECI) overall (AUROCs: THS=0.823, CCI=0.735,
ISSN:1438-8871
1439-4456
1438-8871
DOI:10.2196/32900