Self-assembly of MoS2 nanosheet adhered on Fe-MOF heterocrystals for peroxymonosulfate activation via interfacial interaction

[Display omitted] A novel heterogeneous catalyst PB@MoS2 was successfully synthesized via facile hydrothermal processes and identified as a superior peroxymonosulfate (PMS) activator for organic pollutants degradation under visible light irradiation. The MoS2 nanosheet is uniformly adhered to the su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2022-02, Vol.608, p.3098-3110
Hauptverfasser: Zhang, Liang, Zhang, Bofan, Wang, Li, Ge, Rile, Zhou, Wenhui, Kubuki, Shiro, Wu, Ren'an, Wang, Junhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] A novel heterogeneous catalyst PB@MoS2 was successfully synthesized via facile hydrothermal processes and identified as a superior peroxymonosulfate (PMS) activator for organic pollutants degradation under visible light irradiation. The MoS2 nanosheet is uniformly adhered to the surface of iron-based metal–organic framework Prussian blue (PB) cube, exhibiting a tightly hydrangeas-like structure. Benefiting from strongly interfacial interaction (FeMo-sulfide) between PB and MoS2, as confirmed by 57Fe M̈össbauer spectra and electrochemical measurement, the PB@MoS2 catalyst significantly accelerate the charge carrier transfer via interfacial FeMo-sulfide and thereby improve PMS activation ability to generate abundant reactive radicals. Moreover, the crucial iron active site was steadily validated by introduction of sodium oxalate trapping agent and visible light. In summary, the visible light induced Fenton-like reaction over PB@MoS2 catalyst promoted the FeII/FeIII cycling and electron transport and further triggered the reactive species (SO4−, OH, O2− and h+) productivity, realizing an extraordinarily high degradation and mineralization efficiency for various refractory organic pollutants. This work would provide a deep insight into develop heterogeneous Fe-based metal organic framework/MoS2 catalyst for environmental restoration and remediation by photo-Fenton reaction.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2021.11.042