In situ monitoring of phthalate esters (PAEs) pollution and environmental risk assessment in Poyang Lake Basin by DGT Technology using cyclodextrin polymer as binding phase

Poyang Lake is the first freshwater lake in China, which is an important drinking water source. In recent years, industrial pollution has led to the increased phthalate acid esters (PAEs) in Poyang Lake. PAEs are a class of typical endocrine disruptors that can accumulate in organisms and interfere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-02, Vol.808, p.151892-151892, Article 151892
Hauptverfasser: Zhu, Xingqi, Jiang, Lu, Tu, Yizhou, Tian, Yuansong, Xu, Guizhou, Wu, Daishe, Li, Aimin, Xie, Xianchuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poyang Lake is the first freshwater lake in China, which is an important drinking water source. In recent years, industrial pollution has led to the increased phthalate acid esters (PAEs) in Poyang Lake. PAEs are a class of typical endocrine disruptors that can accumulate in organisms and interfere with their secretion systems. Thus, the accurate determination of PAEs in Poyang Lake is important for health risk prediction and the development of corresponding control means. Monitoring organic pollutants in water using the diffusive gradient in thin films technique (DGT) has attracted much attention due to more accuracy and convenience than the traditional methods. This study used an inexpensive amphiphilic cyclodextrin polymer (PBCD) as the sorbent for the binding gel. This new binding gel has an ultra-high specific surface area and excellent adsorption performance. Diffusion coefficients of the five PAEs were determined, and the performance of DGT such as adsorption capacity and deployment time (1–4 days) was tested using five PAEs as models. The assembled PBCD-DGT was used to examine the performance in a complex simulated water environment. The sampling capability of PBCD-DGT was verified in Yangshan Lake, and a large-scale field application was conducted in Poyang Lake basin. The results of 11 sampling points showed that the concentration ranges of dimethyl phthalate, diethyl phthalate, diallyl phthalate, dipropyl phthalate, and dibutyl phthalate were 434–2594 ng/L, 40–314 ng/L, 80–527 ng/L, 45–308 ng/L, and ND-182 ng/L, respectively. The health risk index (HI) and ecological risk quotient (RQ) values of PAEs in the Poyang Lake watershed were far below 1, indictating a lower health and ecological risk. Considering that PAEs are bioaccumulative and persistent, it is very necessary to continue to pay attention to its pollution status and health and ecological risk changes in Poyang Lake Basin in the future. [Display omitted] •An in-situ method based on DGT for phthalate esters (PAEs) measurement is presented.•hyper-cross-linked β-cyclodextrin polymers are used as binding materials for DGT•The DGT method is stable and effective over a wide range of environmental factors.•Monitoring the concentration of PAEs in Poyang Lake through DGT and assessing the risk.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.151892