Hydrazided hyaluronan/cisplatin/indocyanine green coordination nanoprodrug for photodynamic chemotherapy in liver cancer
It is still a huge challenge for concurrent highly efficient loading of chemotherapeutic agent and photosensitizer into single nanocarrier via stimuli-responsive linkages due to their different physicochemical properties and pharmacokinetics. Herein, based on the discovery of unique cisplatin-hydraz...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2022-01, Vol.276, p.118810-118810, Article 118810 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is still a huge challenge for concurrent highly efficient loading of chemotherapeutic agent and photosensitizer into single nanocarrier via stimuli-responsive linkages due to their different physicochemical properties and pharmacokinetics. Herein, based on the discovery of unique cisplatin-hydrazide and cisplatin-indocyanine green (ICG) coordination reactions, a multifunctional coordination nanoprodrug, cisplatin/ICG co-loaded hydrazided hyaluronan/bovine serum albumin (HBCI) nanoparticles, was developed by a desolvation-dual coordination process. The nanoprodrug exhibited ultrahigh drug loading efficiency and glutathione/NIR light dual-responsive drug release behavior. In vitro cellular studies demonstrated efficient internalization and apoptosis-inducing ability of the nanoprodrug in HepG2 cells. In vivo results confirmed the efficacious tumor accumulation and biosafety of HBCI nanoprodrug and synergistic effect of HBCI-based combined photodynamic chemotherapy on inhibiting tumor growth. Overall, this work not only provides a novel dual coordination approach for highly efficient loading of cisplatin and ICG but also verifies the therapeutic potential of HBCI nanoprodrug in combating hepatocellular carcinoma.
[Display omitted] |
---|---|
ISSN: | 0144-8617 1879-1344 |
DOI: | 10.1016/j.carbpol.2021.118810 |