Systematic optimization of exopolysaccharide production by Gluconacetobacter sp. and use of (crude) glycerol as carbon source

The usage of polysaccharides as biodegradable polymers is of growing interest in the context of a sustainable and ecofriendly economy. For this, the production of exopolysaccharides (EPS) by Gluconacetobacter sp. was investigated. Glycerol as carbon source revealed to be beneficial compared to gluco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2022-01, Vol.276, p.118769-118769, Article 118769
Hauptverfasser: Rath, Tristan, Rühmann, Broder, Schmid, Jochen, Sieber, Volker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The usage of polysaccharides as biodegradable polymers is of growing interest in the context of a sustainable and ecofriendly economy. For this, the production of exopolysaccharides (EPS) by Gluconacetobacter sp. was investigated. Glycerol as carbon source revealed to be beneficial compared to glucose. In addition, pure glycerol could be substituted by a crude glycerol waste stream from biodiesel production. Systematic analysis of the peptone and phosphate concentrations in glycerol-based media indicated a strong effect of peptone. Optimized parameters resulted in a titer of 25.4 ± 2.4 g/L EPS with a productivity of 0.46 ± 0.04 g*(L*h)−1. With decreasing peptone, a variation in the monomer ratios was observed. An accompanying change in molecular size distribution indicated the production of two different polysaccharides. Intensified analysis revealed the main polysaccharide to be composed of glucose (Glc), galactose (Gal), mannose (Man) and glucuronic acid (GlcA), and the minor polysaccharide of Gal, Man, ribose (Rib).
ISSN:0144-8617
1879-1344
DOI:10.1016/j.carbpol.2021.118769