A novel approach for the removal of Pb2+ and Cd2+ from wastewater by sulfur-ferromagnetic nanoparticles (SFMNs)

In the recent decades, due to rapid increase in industrialization, urbanization, anthropogenic activity in the catchments, removal of heavy metals contaminants in wastewater has become global challenges. Numerous advance technologies have been introduced to deal with these problems but failed in red...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2022-01, Vol.287, p.132156-132156, Article 132156
Hauptverfasser: Song, Hewei, Kumar, Amit, Zhang, Yuling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the recent decades, due to rapid increase in industrialization, urbanization, anthropogenic activity in the catchments, removal of heavy metals contaminants in wastewater has become global challenges. Numerous advance technologies have been introduced to deal with these problems but failed in reducing adequate pollution load in the contaminated water and/or wastewater. In this study, sulfur-ferromagnetic nanoparticles (SFMNs) were synthesized by modification of nano-Fe3O4, which can be rapidly separated from the environment by an external magnetic field after in situ repair. Its structure and physical properties were characterized by conventional techniques included Transmission electron microscope (TEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The ability of the SFMNs to remove Pb2+ and Cd2+ was studied at different temperatures and initial metal ions concentrations. The adsorption kinetics showed that the adsorption equilibrium time of Pb2+ and Cd2+ was 300 min consequently adsorption process of SFMNs fit well (R2 > 0.99) with pseudo-second-order model. The adsorption thermodynamics showed that the adsorption of Pb2+ and Cd2+ on SFMNs is spontaneous (negative value of ΔG0) endothermic process (positive value of ΔH0) and fit well (R2 > 0.98) with the Langmuir isothermal model. Density functional theory (DFT) calculations show that SFMNs can transfer electrons to Pb2+ and Cd2+, and the metal ions form stable chelates on the ligand surface. This study implies that newly synthesized sulfur-ferromagnetic nanoparticles could play an instrumental role in metal ions removal from water and wastewater. •Sulfur-ferromagnetic nanoparticles (SFMNs) were obtained by modified nanomagnets.•SFMNs have good adsorption effect on Pb2+ and Cd2+.•The adsorption process satisfies pseudo-second-order model(R2 > 0.99).•The process of adsorption is a spontaneous, endothermic reaction.•Pb2+ and Cd2+ form stable chelates on the surface of SFMNs.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2021.132156