Estimation of wetland biodiversity based on the hydrological patterns and connectivity and its potential application in change detection and monitoring: A case study of the Sanjiang Plain, China
A high biodiversity conservation value of a specific area generally indicates biodiversity priorities, making biodiversity conservation planning more reasonable. However, the spatial prioritization of biodiversity cannot easily indicate temporal changes because the data of many species are difficult...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2022-01, Vol.805, p.150291-150291, Article 150291 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A high biodiversity conservation value of a specific area generally indicates biodiversity priorities, making biodiversity conservation planning more reasonable. However, the spatial prioritization of biodiversity cannot easily indicate temporal changes because the data of many species are difficult to obtain in even a single period, let alone repeated surveys. Here, we show that the easily available wetland hydrological pattern and connectivity (HCP) variables are effective surrogates for the monitoring of biodiversity conservation value. We used the Systematic Conservation Planning (SCP) method to evaluate the historical biodiversity conservation value (BCV), represented by Irreplaceability Index, by integrating the predicted spatial distribution of biodiversity features in 1995. We then calculated the wetland HPC indexes in randomly setup samples within a certain radius and analysed the correlation between the BCV and HPC indexes with a regression method. Finally, we further simulated the numerical and spatial changes of the BCV in different periods to illustrate its variation regularity. We found that the BCV considerably decreased in the study area. In conclusion, we confirmed that the wetland HPC indexes are significantly correlated with and can simulate the BCV indicator. We further identified the spatial locations of these degraded areas and proposed conservation and restoration scenarios for the study area. This study verified the impacts of HPC changes on wetland biodiversity caused by human-induced land use change; it also provides a reference for long-term assessment of wetland biodiversity change.
Among other abilities, effective biodiversity conservation should have the abilities to both prioritize the conservation value and detect its spatial changes. However, the assessment of biodiversity conservation value needs sufficient and high-quality species occurrence data and multi-period comparison. Here, we find that the relatively well accessible wetland hydrological pattern and connectivity indexes are effective surrogates for the change detection of wetland biodiversity conservation value. This means that wetland biodiversity conservation planners can monitor the biodiversity conservation situations without resource-consuming investigations to obtain species' occurrence data and repeated prioritization of the conservation value.
[Display omitted]
•Hydrological patterns are key variables for simulating wetland biodiversity.•A model for priorit |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2021.150291 |