Effect of surface passivation with SiN on the electrical properties of InP/InGaAs heterojunction bipolar transistors

The effects of the SiN layer normally used to passivate and protect the exposed junction surfaces in InP/InGaAs heterojunction bipolar transistors have been studied and shown to degrade the transistor properties. These effects are ascribed primarily to surface damage associated with the high SiN dep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1993-11, Vol.74 (9), p.5602-5605
Hauptverfasser: Ouacha, A., Willander, M., Hammarlund, B., Logan, R. A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of the SiN layer normally used to passivate and protect the exposed junction surfaces in InP/InGaAs heterojunction bipolar transistors have been studied and shown to degrade the transistor properties. These effects are ascribed primarily to surface damage associated with the high SiN deposition temperature (350 °C). A degradation of the emitter-base properties was observed through the nonideal behavior of the base current and the measured short minority-carrier lifetime in the base, extracted by using the base width modulation method. Degradation in the current gain and emitter injection efficiency was also observed. A clear recovery of the transistor was observed after removing the SiN passivation layer indicating that the high SiN deposition temperature results in a high-surface-state density which increases the surface recombination velocity and degrades the junction properties. It is concluded that a low-temperature deposition and good quality dielectric are necessary to exploit the excellent electrical properties of InP-based heterojunction bipolar transistors.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.354221