Efficient algorithms for finding the most vital edge of a minimum spanning tree
Let G( V, E) be an undirected graph with m edges and n vertices such that each edge e has a real valued weight w(e). Let MST(G) be a minimum spanning tree in G. Let ƒ( G) be the weight of a minimum spanning tree of G if G is connected; otherwise ƒ(G)∞. We define a most vital edge with respect to a...
Gespeichert in:
Veröffentlicht in: | Information processing letters 1993-12, Vol.48 (5), p.211-213 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G(
V,
E) be an undirected graph with
m edges and
n vertices such that each edge
e has a real valued weight
w(e). Let
MST(G) be a minimum spanning tree in
G. Let ƒ(
G) be the weight of a minimum spanning tree of
G if
G is connected; otherwise
ƒ(G)∞. We define a
most vital edge with respect to a minimum spanning tree in a connected undirected graph
G as an edge
e such that
ƒ(G−e)⩾ƒ(G−e′) for every edge
e′ in
G.
In this paper, we give O(
m+n log
n) and O(
mα(m,n)) time algorithms, which improve O(
m log m) and O(
n
2) time bounds by Hsu et al. in Inform. Process. Lett. 39 (1991) 277–281. |
---|---|
ISSN: | 0020-0190 1872-6119 |
DOI: | 10.1016/0020-0190(93)90082-K |