Circular nanocavity substrate-assisted plasmonic tip for its enhancement in nanofocusing and optical trapping
Plasmonic tip nanofocusing has widely been applied in tip-enhanced Raman spectroscopy, optical trapping, nonlinear optics, and super-resolution imaging due to its capability of high local field enhancement. In this work, a substrate with a circular nanocavity is proposed to enhance the nanofocusing...
Gespeichert in:
Veröffentlicht in: | Optics express 2021-11, Vol.29 (23), p.37515-37524 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plasmonic tip nanofocusing has widely been applied in tip-enhanced Raman spectroscopy, optical trapping, nonlinear optics, and super-resolution imaging due to its capability of high local field enhancement. In this work, a substrate with a circular nanocavity is proposed to enhance the nanofocusing and optical trapping characteristics of the plasmonic tip. Under axial illumination of a tightly focused radial polarized beam, the circular nanohole etched on a metallic substrate can form a nanocavity to induce an interference effect and further enhance the electric field intensity. When a plasmonic tip is placed closely above such a substrate, the electric field intensity of the gap-plasmon mode can further be improved, which is 10 folds stronger than that of the conventional gap-plasmon mode. Further analysis reveals that the enhanced gap-plasmon mode can significantly strengthen the optical force exerted on a nanoparticle and stably trap a 4-nm-diameter dielectric nanoparticle. Our proposed method can improve the performance of tip-enhanced spectroscopy, plasmonic tweezers and extend their applications. We anticipate that our methods allow simultaneously manipulating and characterizing single nanoparticles in-situ. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.441689 |