Genomic analysis of antibiotic-resistant Enterococcus spp. reveals novel enterococci strains and the spread of plasmid-borne Tet(M), Tet(L) and Erm(B) genes from chicken litter to agricultural soil in South Africa

[Display omitted] •Chicken litter is a major reservoir of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs).•Twenty-one different ARGs were detected in the antibiotic-resistant enterococci isolates from the soil and the chicken litter.•The identified ARGs were mobilised on d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management 2022-01, Vol.302 (Pt B), p.114101-114101, Article 114101
Hauptverfasser: Fatoba, Dorcas Oladayo, Amoako, Daniel Gyamfi, Akebe, Abia Luther King, Ismail, Arshad, Essack, Sabiha Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •Chicken litter is a major reservoir of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs).•Twenty-one different ARGs were detected in the antibiotic-resistant enterococci isolates from the soil and the chicken litter.•The identified ARGs were mobilised on diverse mobile genetic elements.•The litter-amended soil isolates harboured new ARB and ARGs that were not detected in the soil before the amendment.•Phylogenomic analysis showed that a few isolates from the litter-amended soil were related with the chicken litter isolates. Manure from food animals exposed to antibiotics is often used as soil fertiliser, potentially releasing antibiotic-resistant bacteria (ARB) with diverse antibiotic-resistance genes (ARGs) into the soil. To determine the impact of chicken litter application on the soil resistome, Enterococcus spp. isolated from chicken litter and soil samples collected before and after the soil amendment were characterised, using whole-genome sequencing and bioinformatics tools. Nineteen Enterococcus spp. isolates from the three sources were sequenced on Illumina Miseq platform to ascertain the isolates’ resistome, mobilome, virulome, clonality, and phylogenomic relationships. Multilocus sequence typing (MLST) analysis revealed eight novel sequence types (STs) (ST1700, ST1752, ST1753, ST1754, ST1755, ST1756, ST1004, and ST1006). The isolates harboured multiple resistance genes including those conferring resistance to inter alia macrolides-lincosamide-streptogramin (erm(B), lnu(B), lnu(G), lsaA, lsaE, eat(A), msr(C)), tetracycline (tet(M), tet(L), tet(S)), aminoglycosides (aac(6’)-Ii, aac(6’)-Iih, ant(6)-Ia, aph(3’)-III, ant(9)-Ia), fluoroquinolones (efmA, and emeA), vancomycin (VanC {VanC-2, VanXY, VanXYC-3, VanXYC-4, VanRC}), and chloramphenicol (cat). The litter-amended soil harboured new ARB (particularly E. faecium) and ARGs (ant(6)-Ia, aac(6’)-Ii, aph(3’)-III), lnu(G), msr(C), and eat(A), efmA) that were not previously detected in the soil. The identified ARGs were associated with diverse mobile genetic elements (MGEs) such as insertion sequences (IS6, ISL3, IS256, IS30), transposons (Tn3 and Tn916) and plasmids (repUS43, repUS1, rep9b, and rep 22). Twenty-eight virulence genes encoding adherence/biofilm formation (ebpA, ebpB, ebpC), antiphagocytosis (elrA) and bacterial sex pheromones (Ccf10, cOB1, cad, and camE), were detected in the genomes of the isolates. Phylogenomic analysis revealed a close relatio
ISSN:0301-4797
1095-8630
DOI:10.1016/j.jenvman.2021.114101