Revisiting the production of L( +)-lactic acid from vine shoots: bioconversion improvements by employing thermotolerant bacteria
Vine shoots ( Vitis vinifera L.) constitute an abundant lignocellulosic source which is frequently underutilised. Alkaline and acidic pretreatments (with and without washing steps) were compared and optimised to release fermentable sugars from vine shoots. An acidic pretreatment using 1.72% H 2 SO 4...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2021-12, Vol.105 (24), p.9385-9402 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vine shoots (
Vitis vinifera
L.) constitute an abundant lignocellulosic source which is frequently underutilised. Alkaline and acidic pretreatments (with and without washing steps) were compared and optimised to release fermentable sugars from vine shoots. An acidic pretreatment using 1.72% H
2
SO
4
at 134 °C for 17 min (with 10% w/w solid biomass), followed by an enzymatic hydrolysis, offered the most cost-effective results, releasing 40.21 g/L sugars. Three thermotolerant strains, namely,
Bacillus coagulans
DSM 2314,
Geobacillus stearothermophilus
DSM 2313, and
G. stearothermophilus
DSM 494, were assessed to produce lactic acid from vine-shoot hydrolysates under aerobic and non-sterile conditions, without the need of detoxification steps. In addition, wine lees were satisfactorily employed as nitrogen sources for the fermentation, providing similar results to yeast extract and being the only nutrient added to vine-shoot hydrolysates. Under optimal conditions,
B. coagulans
DSM 2314 produced 29.21 ± 0.23 g/L lactic acid in 24 h, with a sugar consumption of 98.74 ± 0.07% and a yield of 96.38 ± 0.76%, when supplemented with red wine lees. The purity of the isomer L( +) reached 97.59 ± 1.35% of the total lactic acid produced. Although
G. stearothermophilus
was able to transform the hexoses from vine-shoot hydrolysates into lactic acid, it proved to be inefficient for metabolising pentoses, thus obtaining lower lactic acid values (16–18 g/L).
Graphical abstract |
---|---|
ISSN: | 0175-7598 1432-0614 |
DOI: | 10.1007/s00253-021-11693-1 |