Review on metal dissolution characteristics and harmful metals recovery from electronic wastes by supercritical water

Supercritical water (SCW) technology can be applied as an efficient and environment-friendly method to recover toxic or complex chemical wastes. Separation and chemical reactions under supercritical conditions may be realized by changing the temperature, pressure, and other operating parameters to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2022-02, Vol.424 (Pt D), p.127693-127693, Article 127693
Hauptverfasser: Chen, Jingwei, Meng, Tian, Leng, Erwei, E, Jiaqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Supercritical water (SCW) technology can be applied as an efficient and environment-friendly method to recover toxic or complex chemical wastes. Separation and chemical reactions under supercritical conditions may be realized by changing the temperature, pressure, and other operating parameters to adjust the physical and chemical properties of water. However, salt deposition and corrosion are often encountered during the treatment of inorganic substances, which will hinder the commercial applications of SCW technology. The solubility of salt in high pressure/temperature water forms the theoretical basis for studying the recovery of metal salts in supercritical water and understanding salt deposition. Therefore, this work systematically and objectively reviews different research methods used to analyze salt solubility in high pressure/temperature water, including the experimental method, prediction theoretical modeling, and computer simulation method; the research status and existing data of this parameter are also analyzed. The purpose of this review is to provide ideas and references for follow-up research by providing a comprehensive overview of salt solubility research methods and the current situation. Suggestions for more efficient metal recovery through technology integration are also provided. [Display omitted] •The effect of factors on solvent properties of supercritical water are summarized.•The research on metal dissolution characteristics in supercritical water are reviewed.•Recovery of heavy metals in e-wastes by supercritical water technology is analyzed.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2021.127693