Pauli blocking of light scattering in degenerate fermions

Pauli blocking of spontaneous emission is responsible for the stability of atoms. Electrons cannot decay to lower-lying internal states that are already occupied. Pauli blocking also occurs when free atoms scatter light elastically (Rayleigh scattering) and the final external momentum states are alr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2021-11, Vol.374 (6570), p.976-979
Hauptverfasser: Margalit, Yair, Lu, Yu-Kun, Top, Furkan Çağrı, Ketterle, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pauli blocking of spontaneous emission is responsible for the stability of atoms. Electrons cannot decay to lower-lying internal states that are already occupied. Pauli blocking also occurs when free atoms scatter light elastically (Rayleigh scattering) and the final external momentum states are already populated. This was predicted more than 30 years ago but is challenging to realize experimentally. Here, we report on Pauli blocking of light scattering in a dense quantum-degenerate Fermi gas of ultracold lithium atoms. When the Fermi momentum is larger than the photon recoil, most final momentum states are within the Fermi surface. At low temperature, we find that light scattered even at large angles is suppressed by 37% compared with higher temperatures, where atoms scatter at the single-atom Rayleigh scattering rate.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.abi6153