Tuning the Selectivity between C2H2 and CO2 in Molecular Porous Materials

A combined experimental and theoretical study of C2H2 and CO2 adsorption and separation was performed in two isostructural molecular porous materials (MPMs): MPM-1-Cl ([Cu2(adenine)4Cl2]­Cl2) and MPM-1-TIFSIX ([Cu2(adenine)4(TiF6)2]). It was revealed that MPM-1-Cl displayed higher low-pressure uptak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2021-11, Vol.37 (47), p.13838-13845
Hauptverfasser: Forrest, Katherine A, Pham, Tony, Chen, Kai-Jie, Jiang, Xue, Madden, David G, Franz, Douglas M, Hogan, Adam, Zaworotko, Michael J, Space, Brian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A combined experimental and theoretical study of C2H2 and CO2 adsorption and separation was performed in two isostructural molecular porous materials (MPMs): MPM-1-Cl ([Cu2(adenine)4Cl2]­Cl2) and MPM-1-TIFSIX ([Cu2(adenine)4(TiF6)2]). It was revealed that MPM-1-Cl displayed higher low-pressure uptake, isosteric heat of adsorption (Q st), and selectivity for C2H2 than CO2, whereas the opposite was observed for MPM-1-TIFSIX. While MPM-1-Cl contains only one type of accessible channel, which has a greater preference toward C2H2, MPM-1-TIFSIX contains three distinct accessible channels, one of which is a confined region between two large channels that represents the primary binding site for both adsorbates. According to molecular simulations, the initial adsorption site in MPM-1-TIFSIX interacts more strongly with CO2 than C2H2, thus explaining the inversion of adsorbate selectivity relative to MPM-1-Cl.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.1c02009