Sparse approximate solutions to linear systems
The following problem is considered: given a matrix $A$ in ${\bf R}^{m\times n}$, ($m$ rows and $n$ columns), a vector $b$ in ${\bf R}^m$, and $\epsilon > 0$, compute a vector $x$ satisfying $\|Ax - b\|_{2} \leq \epsilon $ if such exists, such that $x$ has the fewest number of non-zero entries ov...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 1995-04, Vol.24 (2), p.227-234 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 234 |
---|---|
container_issue | 2 |
container_start_page | 227 |
container_title | SIAM journal on computing |
container_volume | 24 |
creator | NATARAJAN, B. K |
description | The following problem is considered: given a matrix $A$ in ${\bf R}^{m\times n}$, ($m$ rows and $n$ columns), a vector $b$ in ${\bf R}^m$, and $\epsilon > 0$, compute a vector $x$ satisfying $\|Ax - b\|_{2} \leq \epsilon $ if such exists, such that $x$ has the fewest number of non-zero entries over all such vectors. It is shown that the problem is NP-hard, but that the well-known greedy heuristic is good in that it computes a solution with at most $\lceil 18 \operatorname{Opt}(\epsilon/2)\|{\bf A}^{+}\|_{2}^{2} \ln ({\| b \|_{2}/\epsilon})\rceil$ non-zero entries, where $\operatorname{Opt}(\epsilon/2)$ is the optimum number of nonzero entries at error $\epsilon/2$, ${\textbf{A}}$ is the matrix obtained by normalizing each column of $A$ with respect to the $L_{2}$ norm, and $\textbf{A}^{+}$ is its pseudo-inverse. |
doi_str_mv | 10.1137/S0097539792240406 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25988297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25988297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-4d123a09e4331a4300997a912d572e9c8901bcf8922c69bb0b8210b4273483333</originalsourceid><addsrcrecordid>eNplUE1LAzEQDaJgrf4Ab4uIt62ZfDTJUYpVoeCheg7ZNAtbtps1swv235vS4kHnMof3Me8NIbdAZwBcPa4pNUpyowxjggo6PyMToEaWCgDOyeQAlwf8klwhbikFIYBPyGzdu4ShcH2f4nezc0MoMLbj0MQOiyEWbdMFlwrc4xB2eE0uatdiuDntKflcPn8sXsvV-8vb4mlVeq70UIoNMO6oCYJzcILn60Y5A2wjFQvGa0Oh8rXOYf3cVBWtNANaCaa40DzPlDwcfXOqrzHgYHcN-tC2rgtxRMuk0ZoZlYl3f4jbOKYuZ7MGzBwolzKT4EjyKSKmUNs-5appb4Haw_vsv_dlzf3J2KF3bZ1c5xv8FeacuZvkP5QabDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919610355</pqid></control><display><type>article</type><title>Sparse approximate solutions to linear systems</title><source>SIAM Journals Online</source><creator>NATARAJAN, B. K</creator><creatorcontrib>NATARAJAN, B. K</creatorcontrib><description>The following problem is considered: given a matrix $A$ in ${\bf R}^{m\times n}$, ($m$ rows and $n$ columns), a vector $b$ in ${\bf R}^m$, and $\epsilon > 0$, compute a vector $x$ satisfying $\|Ax - b\|_{2} \leq \epsilon $ if such exists, such that $x$ has the fewest number of non-zero entries over all such vectors. It is shown that the problem is NP-hard, but that the well-known greedy heuristic is good in that it computes a solution with at most $\lceil 18 \operatorname{Opt}(\epsilon/2)\|{\bf A}^{+}\|_{2}^{2} \ln ({\| b \|_{2}/\epsilon})\rceil$ non-zero entries, where $\operatorname{Opt}(\epsilon/2)$ is the optimum number of nonzero entries at error $\epsilon/2$, ${\textbf{A}}$ is the matrix obtained by normalizing each column of $A$ with respect to the $L_{2}$ norm, and $\textbf{A}^{+}$ is its pseudo-inverse.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/S0097539792240406</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Exact sciences and technology ; Heuristic ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Sciences and techniques of general use</subject><ispartof>SIAM journal on computing, 1995-04, Vol.24 (2), p.227-234</ispartof><rights>1995 INIST-CNRS</rights><rights>[Copyright] © 1995 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-4d123a09e4331a4300997a912d572e9c8901bcf8922c69bb0b8210b4273483333</citedby><cites>FETCH-LOGICAL-c378t-4d123a09e4331a4300997a912d572e9c8901bcf8922c69bb0b8210b4273483333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3484335$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>NATARAJAN, B. K</creatorcontrib><title>Sparse approximate solutions to linear systems</title><title>SIAM journal on computing</title><description>The following problem is considered: given a matrix $A$ in ${\bf R}^{m\times n}$, ($m$ rows and $n$ columns), a vector $b$ in ${\bf R}^m$, and $\epsilon > 0$, compute a vector $x$ satisfying $\|Ax - b\|_{2} \leq \epsilon $ if such exists, such that $x$ has the fewest number of non-zero entries over all such vectors. It is shown that the problem is NP-hard, but that the well-known greedy heuristic is good in that it computes a solution with at most $\lceil 18 \operatorname{Opt}(\epsilon/2)\|{\bf A}^{+}\|_{2}^{2} \ln ({\| b \|_{2}/\epsilon})\rceil$ non-zero entries, where $\operatorname{Opt}(\epsilon/2)$ is the optimum number of nonzero entries at error $\epsilon/2$, ${\textbf{A}}$ is the matrix obtained by normalizing each column of $A$ with respect to the $L_{2}$ norm, and $\textbf{A}^{+}$ is its pseudo-inverse.</description><subject>Algorithms</subject><subject>Exact sciences and technology</subject><subject>Heuristic</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Sciences and techniques of general use</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUE1LAzEQDaJgrf4Ab4uIt62ZfDTJUYpVoeCheg7ZNAtbtps1swv235vS4kHnMof3Me8NIbdAZwBcPa4pNUpyowxjggo6PyMToEaWCgDOyeQAlwf8klwhbikFIYBPyGzdu4ShcH2f4nezc0MoMLbj0MQOiyEWbdMFlwrc4xB2eE0uatdiuDntKflcPn8sXsvV-8vb4mlVeq70UIoNMO6oCYJzcILn60Y5A2wjFQvGa0Oh8rXOYf3cVBWtNANaCaa40DzPlDwcfXOqrzHgYHcN-tC2rgtxRMuk0ZoZlYl3f4jbOKYuZ7MGzBwolzKT4EjyKSKmUNs-5appb4Haw_vsv_dlzf3J2KF3bZ1c5xv8FeacuZvkP5QabDk</recordid><startdate>19950401</startdate><enddate>19950401</enddate><creator>NATARAJAN, B. K</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19950401</creationdate><title>Sparse approximate solutions to linear systems</title><author>NATARAJAN, B. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-4d123a09e4331a4300997a912d572e9c8901bcf8922c69bb0b8210b4273483333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Algorithms</topic><topic>Exact sciences and technology</topic><topic>Heuristic</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NATARAJAN, B. K</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NATARAJAN, B. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse approximate solutions to linear systems</atitle><jtitle>SIAM journal on computing</jtitle><date>1995-04-01</date><risdate>1995</risdate><volume>24</volume><issue>2</issue><spage>227</spage><epage>234</epage><pages>227-234</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>The following problem is considered: given a matrix $A$ in ${\bf R}^{m\times n}$, ($m$ rows and $n$ columns), a vector $b$ in ${\bf R}^m$, and $\epsilon > 0$, compute a vector $x$ satisfying $\|Ax - b\|_{2} \leq \epsilon $ if such exists, such that $x$ has the fewest number of non-zero entries over all such vectors. It is shown that the problem is NP-hard, but that the well-known greedy heuristic is good in that it computes a solution with at most $\lceil 18 \operatorname{Opt}(\epsilon/2)\|{\bf A}^{+}\|_{2}^{2} \ln ({\| b \|_{2}/\epsilon})\rceil$ non-zero entries, where $\operatorname{Opt}(\epsilon/2)$ is the optimum number of nonzero entries at error $\epsilon/2$, ${\textbf{A}}$ is the matrix obtained by normalizing each column of $A$ with respect to the $L_{2}$ norm, and $\textbf{A}^{+}$ is its pseudo-inverse.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0097539792240406</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-5397 |
ispartof | SIAM journal on computing, 1995-04, Vol.24 (2), p.227-234 |
issn | 0097-5397 1095-7111 |
language | eng |
recordid | cdi_proquest_miscellaneous_25988297 |
source | SIAM Journals Online |
subjects | Algorithms Exact sciences and technology Heuristic Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Sciences and techniques of general use |
title | Sparse approximate solutions to linear systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20approximate%20solutions%20to%20linear%20systems&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=NATARAJAN,%20B.%20K&rft.date=1995-04-01&rft.volume=24&rft.issue=2&rft.spage=227&rft.epage=234&rft.pages=227-234&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/S0097539792240406&rft_dat=%3Cproquest_cross%3E25988297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919610355&rft_id=info:pmid/&rfr_iscdi=true |