Sparse approximate solutions to linear systems

The following problem is considered: given a matrix $A$ in ${\bf R}^{m\times n}$, ($m$ rows and $n$ columns), a vector $b$ in ${\bf R}^m$, and $\epsilon > 0$, compute a vector $x$ satisfying $\|Ax - b\|_{2} \leq \epsilon $ if such exists, such that $x$ has the fewest number of non-zero entries ov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 1995-04, Vol.24 (2), p.227-234
1. Verfasser: NATARAJAN, B. K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue 2
container_start_page 227
container_title SIAM journal on computing
container_volume 24
creator NATARAJAN, B. K
description The following problem is considered: given a matrix $A$ in ${\bf R}^{m\times n}$, ($m$ rows and $n$ columns), a vector $b$ in ${\bf R}^m$, and $\epsilon > 0$, compute a vector $x$ satisfying $\|Ax - b\|_{2} \leq \epsilon $ if such exists, such that $x$ has the fewest number of non-zero entries over all such vectors. It is shown that the problem is NP-hard, but that the well-known greedy heuristic is good in that it computes a solution with at most $\lceil 18 \operatorname{Opt}(\epsilon/2)\|{\bf A}^{+}\|_{2}^{2} \ln ({\| b \|_{2}/\epsilon})\rceil$ non-zero entries, where $\operatorname{Opt}(\epsilon/2)$ is the optimum number of nonzero entries at error $\epsilon/2$, ${\textbf{A}}$ is the matrix obtained by normalizing each column of $A$ with respect to the $L_{2}$ norm, and $\textbf{A}^{+}$ is its pseudo-inverse.
doi_str_mv 10.1137/S0097539792240406
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25988297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25988297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-4d123a09e4331a4300997a912d572e9c8901bcf8922c69bb0b8210b4273483333</originalsourceid><addsrcrecordid>eNplUE1LAzEQDaJgrf4Ab4uIt62ZfDTJUYpVoeCheg7ZNAtbtps1swv235vS4kHnMof3Me8NIbdAZwBcPa4pNUpyowxjggo6PyMToEaWCgDOyeQAlwf8klwhbikFIYBPyGzdu4ShcH2f4nezc0MoMLbj0MQOiyEWbdMFlwrc4xB2eE0uatdiuDntKflcPn8sXsvV-8vb4mlVeq70UIoNMO6oCYJzcILn60Y5A2wjFQvGa0Oh8rXOYf3cVBWtNANaCaa40DzPlDwcfXOqrzHgYHcN-tC2rgtxRMuk0ZoZlYl3f4jbOKYuZ7MGzBwolzKT4EjyKSKmUNs-5appb4Haw_vsv_dlzf3J2KF3bZ1c5xv8FeacuZvkP5QabDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919610355</pqid></control><display><type>article</type><title>Sparse approximate solutions to linear systems</title><source>SIAM Journals Online</source><creator>NATARAJAN, B. K</creator><creatorcontrib>NATARAJAN, B. K</creatorcontrib><description>The following problem is considered: given a matrix $A$ in ${\bf R}^{m\times n}$, ($m$ rows and $n$ columns), a vector $b$ in ${\bf R}^m$, and $\epsilon &gt; 0$, compute a vector $x$ satisfying $\|Ax - b\|_{2} \leq \epsilon $ if such exists, such that $x$ has the fewest number of non-zero entries over all such vectors. It is shown that the problem is NP-hard, but that the well-known greedy heuristic is good in that it computes a solution with at most $\lceil 18 \operatorname{Opt}(\epsilon/2)\|{\bf A}^{+}\|_{2}^{2} \ln ({\| b \|_{2}/\epsilon})\rceil$ non-zero entries, where $\operatorname{Opt}(\epsilon/2)$ is the optimum number of nonzero entries at error $\epsilon/2$, ${\textbf{A}}$ is the matrix obtained by normalizing each column of $A$ with respect to the $L_{2}$ norm, and $\textbf{A}^{+}$ is its pseudo-inverse.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/S0097539792240406</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Exact sciences and technology ; Heuristic ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Sciences and techniques of general use</subject><ispartof>SIAM journal on computing, 1995-04, Vol.24 (2), p.227-234</ispartof><rights>1995 INIST-CNRS</rights><rights>[Copyright] © 1995 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-4d123a09e4331a4300997a912d572e9c8901bcf8922c69bb0b8210b4273483333</citedby><cites>FETCH-LOGICAL-c378t-4d123a09e4331a4300997a912d572e9c8901bcf8922c69bb0b8210b4273483333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3484335$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>NATARAJAN, B. K</creatorcontrib><title>Sparse approximate solutions to linear systems</title><title>SIAM journal on computing</title><description>The following problem is considered: given a matrix $A$ in ${\bf R}^{m\times n}$, ($m$ rows and $n$ columns), a vector $b$ in ${\bf R}^m$, and $\epsilon &gt; 0$, compute a vector $x$ satisfying $\|Ax - b\|_{2} \leq \epsilon $ if such exists, such that $x$ has the fewest number of non-zero entries over all such vectors. It is shown that the problem is NP-hard, but that the well-known greedy heuristic is good in that it computes a solution with at most $\lceil 18 \operatorname{Opt}(\epsilon/2)\|{\bf A}^{+}\|_{2}^{2} \ln ({\| b \|_{2}/\epsilon})\rceil$ non-zero entries, where $\operatorname{Opt}(\epsilon/2)$ is the optimum number of nonzero entries at error $\epsilon/2$, ${\textbf{A}}$ is the matrix obtained by normalizing each column of $A$ with respect to the $L_{2}$ norm, and $\textbf{A}^{+}$ is its pseudo-inverse.</description><subject>Algorithms</subject><subject>Exact sciences and technology</subject><subject>Heuristic</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Sciences and techniques of general use</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUE1LAzEQDaJgrf4Ab4uIt62ZfDTJUYpVoeCheg7ZNAtbtps1swv235vS4kHnMof3Me8NIbdAZwBcPa4pNUpyowxjggo6PyMToEaWCgDOyeQAlwf8klwhbikFIYBPyGzdu4ShcH2f4nezc0MoMLbj0MQOiyEWbdMFlwrc4xB2eE0uatdiuDntKflcPn8sXsvV-8vb4mlVeq70UIoNMO6oCYJzcILn60Y5A2wjFQvGa0Oh8rXOYf3cVBWtNANaCaa40DzPlDwcfXOqrzHgYHcN-tC2rgtxRMuk0ZoZlYl3f4jbOKYuZ7MGzBwolzKT4EjyKSKmUNs-5appb4Haw_vsv_dlzf3J2KF3bZ1c5xv8FeacuZvkP5QabDk</recordid><startdate>19950401</startdate><enddate>19950401</enddate><creator>NATARAJAN, B. K</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19950401</creationdate><title>Sparse approximate solutions to linear systems</title><author>NATARAJAN, B. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-4d123a09e4331a4300997a912d572e9c8901bcf8922c69bb0b8210b4273483333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Algorithms</topic><topic>Exact sciences and technology</topic><topic>Heuristic</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NATARAJAN, B. K</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NATARAJAN, B. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse approximate solutions to linear systems</atitle><jtitle>SIAM journal on computing</jtitle><date>1995-04-01</date><risdate>1995</risdate><volume>24</volume><issue>2</issue><spage>227</spage><epage>234</epage><pages>227-234</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>The following problem is considered: given a matrix $A$ in ${\bf R}^{m\times n}$, ($m$ rows and $n$ columns), a vector $b$ in ${\bf R}^m$, and $\epsilon &gt; 0$, compute a vector $x$ satisfying $\|Ax - b\|_{2} \leq \epsilon $ if such exists, such that $x$ has the fewest number of non-zero entries over all such vectors. It is shown that the problem is NP-hard, but that the well-known greedy heuristic is good in that it computes a solution with at most $\lceil 18 \operatorname{Opt}(\epsilon/2)\|{\bf A}^{+}\|_{2}^{2} \ln ({\| b \|_{2}/\epsilon})\rceil$ non-zero entries, where $\operatorname{Opt}(\epsilon/2)$ is the optimum number of nonzero entries at error $\epsilon/2$, ${\textbf{A}}$ is the matrix obtained by normalizing each column of $A$ with respect to the $L_{2}$ norm, and $\textbf{A}^{+}$ is its pseudo-inverse.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0097539792240406</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-5397
ispartof SIAM journal on computing, 1995-04, Vol.24 (2), p.227-234
issn 0097-5397
1095-7111
language eng
recordid cdi_proquest_miscellaneous_25988297
source SIAM Journals Online
subjects Algorithms
Exact sciences and technology
Heuristic
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Sciences and techniques of general use
title Sparse approximate solutions to linear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20approximate%20solutions%20to%20linear%20systems&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=NATARAJAN,%20B.%20K&rft.date=1995-04-01&rft.volume=24&rft.issue=2&rft.spage=227&rft.epage=234&rft.pages=227-234&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/S0097539792240406&rft_dat=%3Cproquest_cross%3E25988297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919610355&rft_id=info:pmid/&rfr_iscdi=true