Sparse approximate solutions to linear systems
The following problem is considered: given a matrix $A$ in ${\bf R}^{m\times n}$, ($m$ rows and $n$ columns), a vector $b$ in ${\bf R}^m$, and $\epsilon > 0$, compute a vector $x$ satisfying $\|Ax - b\|_{2} \leq \epsilon $ if such exists, such that $x$ has the fewest number of non-zero entries ov...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 1995-04, Vol.24 (2), p.227-234 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The following problem is considered: given a matrix $A$ in ${\bf R}^{m\times n}$, ($m$ rows and $n$ columns), a vector $b$ in ${\bf R}^m$, and $\epsilon > 0$, compute a vector $x$ satisfying $\|Ax - b\|_{2} \leq \epsilon $ if such exists, such that $x$ has the fewest number of non-zero entries over all such vectors. It is shown that the problem is NP-hard, but that the well-known greedy heuristic is good in that it computes a solution with at most $\lceil 18 \operatorname{Opt}(\epsilon/2)\|{\bf A}^{+}\|_{2}^{2} \ln ({\| b \|_{2}/\epsilon})\rceil$ non-zero entries, where $\operatorname{Opt}(\epsilon/2)$ is the optimum number of nonzero entries at error $\epsilon/2$, ${\textbf{A}}$ is the matrix obtained by normalizing each column of $A$ with respect to the $L_{2}$ norm, and $\textbf{A}^{+}$ is its pseudo-inverse. |
---|---|
ISSN: | 0097-5397 1095-7111 |
DOI: | 10.1137/S0097539792240406 |