SpSR-B2 functions as a potential pattern recognition receptor involved in antiviral and antibacterial immune responses of mud crab Scylla paramamosain

Although class B scavenger receptors (SR-Bs) in mammals are multifunctional molecules, the functions of SR-Bs in invertebrates remain largely unknown. In this study, we characterized an SR-B homolog, namely SpSR-B2, from Scylla paramamosain. SpSR-B2 shared high similarity with mammalian SR-Bs, and e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2021-12, Vol.193 (Pt B), p.2173-2182
Hauptverfasser: Zhou, Jian, Zhou, Jun-Fang, Wang, Yue, Feng, Guang-Peng, Fang, Wen-Hong, Kang, Wei, Ma, Ling-Bo, Li, Xin-Cang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although class B scavenger receptors (SR-Bs) in mammals are multifunctional molecules, the functions of SR-Bs in invertebrates remain largely unknown. In this study, we characterized an SR-B homolog, namely SpSR-B2, from Scylla paramamosain. SpSR-B2 shared high similarity with mammalian SR-Bs, and exhibited specific binding activity to ac-LDL, indicating that it may be a new member of SR-B class in invertebrates. SpSR-B2 was upregulated after challenge with white spot syndrome virus (WSSV) or bacteria. Binding assays showed that SpSR-B2 specifically interacted with WSSV envelope protein VP24. Besides, SpSR-B2 could bind to all tested bacterial cells and agglutinate these bacteria. SpSR-B2 also exhibited a strong binding activity to LPS but weak binding activities to other tested polysaccharides. These findings indicated that SpSR-B2 was a potential recognition molecule for viral protein VP24 and bacterial LPS. Knockdown of SpSR-B2 resulted in dramatically decreased expressions of certain antimicrobial peptides (AMPs), and overexpression of SpSR-B2 led to the increased expression of the AMP of SpALF2, suggesting that SpSR-B2 could regulate the expression of AMPs. Taken together, this study revealed that SpSR-B2 functioned as a potential pattern recognition receptor participating in antiviral and antibacterial immunity, and provided new insights into the immune functions of invertebrate SR-Bs. •SpSR-B2 specifically interacted with WSSV envelope protein VP24.•SpSR-B2 displayed strong binding activity to LPS.•SpSR-B2 regulated the expressions of certain AMPs.•SpSR-B2 functioned as a potential PRR participating in antiviral and antibacterial immunity.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2021.11.048