Remarkable characteristics and distinct community of biofilms on the photoaged polyethylene films in riverine microcosms
Recalcitrant plastics in the environment are gradually fragmented into weathered debris distinguished from their original state by the integrative action of influencing factors, such as UV light, heating and physical abrasion. As new artificial carbon-source substrates in aquatic ecosystems, plastic...
Gespeichert in:
Veröffentlicht in: | Environmental pollution (1987) 2022-01, Vol.292, p.118485-118485, Article 118485 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recalcitrant plastics in the environment are gradually fragmented into weathered debris distinguished from their original state by the integrative action of influencing factors, such as UV light, heating and physical abrasion. As new artificial carbon-source substrates in aquatic ecosystems, plastic products can be colonized by biofilms and even utilized by microorganisms. To investigate the influences of weathering of plastics on the colonized biofilms, freshwater samples from the Yangtze River (Nanjing, China) were collected for biofilm incubation. Based on the characterization of plastics and biofilms, the effects of plastic surface properties on biofilm characteristics were revealed by the analysis of partial least squares regression (PLSR). Roughness was the principal influencing factor, while rigidity had the opposite effect to it. 16S rRNA gene high-throughput sequencing results indicated the high relative abundance of Cyanobacteria and rising proportion of harmful components (e.g., Flavobacterium) on photoaged polyethylene plastics. The microbial functional profiles (KEGG) predicted by Tax4Fun showed that the functions (e.g., membrane transport, energy metabolism, etc.) of biofilm on photoaged plastics were dissimilar with those on original ones. These findings suggested that the distinct microbial community and the adverse functional changes in biofilms on photoaged plastics potentially enhanced their environmental risks. On the other hand, 28-day cultured biofilms on original low-density polyethylene (LDPE) films were dominated by Exiguobacterium. The previously ignored potentials of this microorganism in rapidly accommodating to a hydrophobic substrate and its plastic degrading ability were both worthy of attention. Therefore, it is necessary to consider the weathering process of plastics in exploring the “plastisphere”, and to give further insights into the double-edged nature of the “plastisphere".
[Display omitted]
•Biofilms on photoaged plastics showed elevated biomass and carbon metabolism.•Contributions of plastic surface properties to changes of biofilms were determined.•Microbe with hydrophobic adaptability was found in biofilms on original plastics.•Dominant members in the biofilms on photoaged plastics were altered.•Risk of photoaged plastics is potentially enhanced by distinct microbial community. |
---|---|
ISSN: | 0269-7491 1873-6424 |
DOI: | 10.1016/j.envpol.2021.118485 |