Novel and legacy per- and polyfluoroalkyl substances (PFAS) in freshwater sporting fish from background and firefighting foam impacted ecosystems in Eastern Canada

Emerging PFAS were recently reported at sites impacted by aqueous film-forming foams (AFFFs) and near major manufacturing centers; however, few studies have evaluated whether these can occur far from release sites. Here, newly identified PFAS were investigated in wild sporting fish from boreal fresh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-04, Vol.816, p.151563-151563, Article 151563
Hauptverfasser: Kaboré, Hermann A., Goeury, Ken, Desrosiers, Mélanie, Vo Duy, Sung, Liu, Jinxia, Cabana, Gilbert, Munoz, Gabriel, Sauvé, Sébastien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Emerging PFAS were recently reported at sites impacted by aqueous film-forming foams (AFFFs) and near major manufacturing centers; however, few studies have evaluated whether these can occur far from release sites. Here, newly identified PFAS were investigated in wild sporting fish from boreal freshwater ecosystems (background sites, 2013–2014 summer seasons), compared to fish impacted by a major AFFF release (summer 2013 and autumn 2014). Different freshwater wild sporting fish species (Esox lucius, Esox masquinongy, Micropterus dolomieu, Sander vitreus, Perca flavescens, and Semotilus corporalis, n = 74) were collected from 13 ecosystems (lakes, reservoirs, and rivers) across Eastern Canada. Of 29 quantitative PFAS, 15 compounds were detected in fish from background sites, including perfluorocarboxylates (C6,8–14), perfluoroalkane sulfonates (C6,8,10), perfluorooctane sulfonamide (FOSA), 6:2 fluorotelomer sulfonate (6:2 FTSA), 7:3 fluorotelomer carboxylic acid (7:3 FTCA), and a zwitterionic PFAS—perfluorooctane sulfonamidoalkyl betaine (PFOSB). To our knowledge, this is the first report of PFOSB in biota. It is also one of the first reports of anionic fluorotelomers (6:2 FTSA, 7:3 FTCA, 9:3 FTCA) in wildlife from background sites. Long-chain fluorotelomer sulfonamidoalkyl betaines (e.g., 8:2 and 10:2 FTAB), fluorotelomer betaines (e.g., 9:3 and 9:1:2 FTB), and fluorotelomer sulfone propanoic acids (e.g., 8:2 FT(SO2)-PA, 10:2 FT(SO2)-PA)) were solely prevalent (up to 97% of summed suspect PFAS) in Smallmouth Bass (M. dolomieu) from the AFFF-impacted site. Perfluorobutane sulfonamide (FBSA), perfluorohexane sulfonamide (FHxSA), 6:2 FTSA and 7:3 FTCA were detected in at least one Smallmouth Bass sample both at the AFFF-impacted and background sites. According to the estimated chronic daily intake and current tolerable daily intake suggested by national agencies, the observed PFOS levels would not pose a health risk to anglers who might consume these wild-caught fish. [Display omitted] •Newly identified PFAS were investigated in wild fish from boreal ecosystems.•15 compounds were detected in fish from background sites.•Certain ECF-based sulfonamide precursors were detected at background sites.•Specific fluorotelomers were detected in fish from a recently impacted AFFF site.•The fish PFOS levels do not seem to pose a health risk to consumers.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.151563