Toward Lossless Infrared Optical Trapping of Small Nanoparticles Using Nonradiative Anapole Modes
A challenge in plasmonic trapping of small nanoparticles is the heating due to the Joule effect of metallic components. This heating can be avoided with electromagnetic field confinement in high-refractive-index materials, but nanoparticle trapping is difficult because the electromagnetic fields are...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2021-10, Vol.127 (18), p.186803-186803, Article 186803 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A challenge in plasmonic trapping of small nanoparticles is the heating due to the Joule effect of metallic components. This heating can be avoided with electromagnetic field confinement in high-refractive-index materials, but nanoparticle trapping is difficult because the electromagnetic fields are mostly confined inside the dielectric nanostructures. Herein, we present the design of an all-dielectric platform to capture small dielectric nanoparticles without heating the nanostructure. It consists of a Si nanodisk engineered to exhibit the second-order anapole mode at the infrared regime (λ=980 nm), where Si has negligible losses, with a slot at the center. A strong electromagnetic hot spot is created, thus allowing us to capture nanoparticles as small as 20 nm. The numerical calculations indicate that optical trapping in these all-dielectric nanostructures occurs without heating only in the infrared, since for visible wavelengths the heating levels are similar to those in plasmonic nanostructures. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.127.186803 |