Periodic Cavity State Revivals from Atomic Frequency Combs

Spin ensembles with a comb-shaped spectrum have shown exciting properties as efficient quantum memories. Here, we present a rigorous theoretical study of such atomic frequency combs in the strong coupling limit of cavity QED, based on a full quantum treatment using tensor-network methods. Our result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-10, Vol.127 (18), p.180402-180402, Article 180402
Hauptverfasser: Zens, Matthias, Krimer, Dmitry O., Dhar, Himadri S., Rotter, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spin ensembles with a comb-shaped spectrum have shown exciting properties as efficient quantum memories. Here, we present a rigorous theoretical study of such atomic frequency combs in the strong coupling limit of cavity QED, based on a full quantum treatment using tensor-network methods. Our results demonstrate that arbitrary multiphoton states in the cavity are almost perfectly absorbed by the spin ensemble and reemitted as parity-flipped states at periodic time intervals. Fidelity values near unity are achieved in these revived states by compensating for energy shifts induced by the strong spin-cavity coupling through adjustments of individual coupling values of the teeth in the atomic frequency comb.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.127.180402