Investigation of SiGeSn/GeSn/SiGeSn single quantum well with enhanced well emission

In this work, a SiGeSn/GeSn/SiGeSn single quantum well was grown and characterized. The sample has a thicker GeSn well of 22nm compared to a previously reported 9nm well configuration. The thicker well leads to: (i) lowered ground energy level in Γ valley offering more bandgap directness; (ii) incre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2022-02, Vol.33 (8), p.85201
Hauptverfasser: Olorunsola, Oluwatobi, Ojo, Solomon, Abernathy, Grey, Zhou, Yiyin, Amoah, Sylvester, Grant, P C, Dou, Wei, Margetis, Joe, Tolle, John, Kuchuk, Andrian, Du, Wei, Li, Baohua, Zhang, Yong-Hang, Yu, Shui-Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, a SiGeSn/GeSn/SiGeSn single quantum well was grown and characterized. The sample has a thicker GeSn well of 22nm compared to a previously reported 9nm well configuration. The thicker well leads to: (i) lowered ground energy level in Γ valley offering more bandgap directness; (ii) increased carrier density in the well; and (iii) improved carrier collection due to increased barrier height. As a result, significantly enhanced emission from the quantum well was observed. The strong photoluminescence (PL) signal allows for the estimation of quantum efficiency (QE), which was unattainable in previous studies. Using pumping-power-dependent PL spectra at 20K, the peak spontaneous QE and external QE were measured as 37.9% and 1.45%, respectively.
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/ac38e4